Robotics, Vision and Control

Robotics, Vision and Control

Author: Peter Corke

Publisher: Springer

Published: 2011-09-05

Total Pages: 572

ISBN-13: 364220144X

DOWNLOAD EBOOK

The author has maintained two open-source MATLAB Toolboxes for more than 10 years: one for robotics and one for vision. The key strength of the Toolboxes provide a set of tools that allow the user to work with real problems, not trivial examples. For the student the book makes the algorithms accessible, the Toolbox code can be read to gain understanding, and the examples illustrate how it can be used —instant gratification in just a couple of lines of MATLAB code. The code can also be the starting point for new work, for researchers or students, by writing programs based on Toolbox functions, or modifying the Toolbox code itself. The purpose of this book is to expand on the tutorial material provided with the toolboxes, add many more examples, and to weave this into a narrative that covers robotics and computer vision separately and together. The author shows how complex problems can be decomposed and solved using just a few simple lines of code, and hopefully to inspire up and coming researchers. The topics covered are guided by the real problems observed over many years as a practitioner of both robotics and computer vision. It is written in a light but informative style, it is easy to read and absorb, and includes a lot of Matlab examples and figures. The book is a real walk through the fundamentals of robot kinematics, dynamics and joint level control, then camera models, image processing, feature extraction and epipolar geometry, and bring it all together in a visual servo system. Additional material is provided at http://www.petercorke.com/RVC


Robot Vision

Robot Vision

Author: A. Pugh

Publisher: Springer Science & Business Media

Published: 2013-06-29

Total Pages: 347

ISBN-13: 3662097710

DOWNLOAD EBOOK

Over the past five years robot vision has emerged as a subject area with its own identity. A text based on the proceedings of the Symposium on Computer Vision and Sensor-based Robots held at the General Motors Research Laboratories, Warren, Michigan in 1978, was published by Plenum Press in 1979. This book, edited by George G. Dodd and Lothar Rosso!, probably represented the first identifiable book covering some aspects of robot vision. The subject of robot vision and sensory controls (RoViSeC) occupied an entire international conference held in the Hilton Hotel in Stratford, England in May 1981. This was followed by a second RoViSeC held in Stuttgart, Germany in November 1982. The large attendance at the Stratford conference and the obvious interest in the subject of robot vision at international robot meetings, provides the stimulus for this current collection of papers. Users and researchers entering the field of robot vision for the first time will encounter a bewildering array of publications on all aspects of computer vision of which robot vision forms a part. It is the grey area dividing the different aspects of computer vision which is not easy to identify. Even those involved in research sometimes find difficulty in separating the essential differences between vision for automated inspection and vision for robot applications. Both of these are to some extent applications of pattern recognition with the underlying philosophy of each defining the techniques used.


Visual Servoing: Real-time Control Of Robot Manipulators Based On Visual Sensory Feedback

Visual Servoing: Real-time Control Of Robot Manipulators Based On Visual Sensory Feedback

Author: Koichi Hashimoto

Publisher: World Scientific

Published: 1993-10-02

Total Pages: 373

ISBN-13: 9814590959

DOWNLOAD EBOOK

This book treats visual feedback control of mechanical systems, mostly robot manipulators. It not only deals with image processing techniques and robot control schemes but also covers the latest investigation of the design of the visual servo mechanism based on modern linear and nonlinear control theory, the adaptive control scheme, fuzzy logic, and neural networks. New concepts for utilizing visual sensory information for real-time manipulator control are derived and the performances are evaluated through simulations and/or experiments.The contributors to this book are robotics specialists from all over the world. The book gives a practical perspective on visual servoing to researchers, engineers, and students working in this area.


Visual Servoing in Robotics

Visual Servoing in Robotics

Author: Jorge Pomares

Publisher: MDPI

Published: 2021-08-31

Total Pages: 166

ISBN-13: 3036503447

DOWNLOAD EBOOK

Visual servoing is a well-known approach to guide robots using visual information. Image processing, robotics, and control theory are combined in order to control the motion of a robot depending on the visual information extracted from the images captured by one or several cameras. With respect to vision issues, a number of issues are currently being addressed by ongoing research, such as the use of different types of image features (or different types of cameras such as RGBD cameras), image processing at high velocity, and convergence properties. As shown in this book, the use of new control schemes allows the system to behave more robustly, efficiently, or compliantly, with fewer delays. Related issues such as optimal and robust approaches, direct control, path tracking, or sensor fusion are also addressed. Additionally, we can currently find visual servoing systems being applied in a number of different domains. This book considers various aspects of visual servoing systems, such as the design of new strategies for their application to parallel robots, mobile manipulators, teleoperation, and the application of this type of control system in new areas.


Visual Perception and Robotic Manipulation

Visual Perception and Robotic Manipulation

Author: Geoffrey Taylor

Publisher: Springer

Published: 2008-08-18

Total Pages: 231

ISBN-13: 3540334556

DOWNLOAD EBOOK

This book moves toward the realization of domestic robots by presenting an integrated view of computer vision and robotics, covering fundamental topics including optimal sensor design, visual servo-ing, 3D object modelling and recognition, and multi-cue tracking, emphasizing robustness throughout. Covering theory and implementation, experimental results and comprehensive multimedia support including video clips, VRML data, C++ code and lecture slides, this book is a practical reference for roboticists and a valuable teaching resource.


Robotics

Robotics

Author: Bruno Siciliano

Publisher: Springer Science & Business Media

Published: 2010-08-20

Total Pages: 644

ISBN-13: 1846286417

DOWNLOAD EBOOK

Based on the successful Modelling and Control of Robot Manipulators by Sciavicco and Siciliano (Springer, 2000), Robotics provides the basic know-how on the foundations of robotics: modelling, planning and control. It has been expanded to include coverage of mobile robots, visual control and motion planning. A variety of problems is raised throughout, and the proper tools to find engineering-oriented solutions are introduced and explained. The text includes coverage of fundamental topics like kinematics, and trajectory planning and related technological aspects including actuators and sensors. To impart practical skill, examples and case studies are carefully worked out and interwoven through the text, with frequent resort to simulation. In addition, end-of-chapter exercises are proposed, and the book is accompanied by an electronic solutions manual containing the MATLAB® code for computer problems; this is available free of charge to those adopting this volume as a textbook for courses.


Robot Control

Robot Control

Author: Claude Samson

Publisher:

Published: 1991

Total Pages: 394

ISBN-13:

DOWNLOAD EBOOK

A complete approach to the problem of controlling robot manipulators needs to bring together three scientific branches: computer science, mechanics, and automatic control.


Cable-Driven Parallel Robots

Cable-Driven Parallel Robots

Author: Tobias Bruckmann

Publisher: Springer Science & Business Media

Published: 2012-09-09

Total Pages: 443

ISBN-13: 3642319874

DOWNLOAD EBOOK

Gathering presentations to the First International Conference on Cable-Driven Parallel Robots, this book covers classification and definition, kinematics, workspace analysis, cable modeling, hardware/prototype development, control and calibration and more.


Aerial Manipulation

Aerial Manipulation

Author: Matko Orsag

Publisher: Springer

Published: 2017-09-19

Total Pages: 246

ISBN-13: 3319610228

DOWNLOAD EBOOK

This text is a thorough treatment of the rapidly growing area of aerial manipulation. It details all the design steps required for the modeling and control of unmanned aerial vehicles (UAV) equipped with robotic manipulators. Starting with the physical basics of rigid-body kinematics, the book gives an in-depth presentation of local and global coordinates, together with the representation of orientation and motion in fixed- and moving-coordinate systems. Coverage of the kinematics and dynamics of unmanned aerial vehicles is developed in a succession of popular UAV configurations for multirotor systems. Such an arrangement, supported by frequent examples and end-of-chapter exercises, leads the reader from simple to more complex UAV configurations. Propulsion-system aerodynamics, essential in UAV design, is analyzed through blade-element and momentum theories, analysis which is followed by a description of drag and ground-aerodynamic effects. The central part of the book is dedicated to aerial-manipulator kinematics, dynamics, and control. Based on foundations laid in the opening chapters, this portion of the book is a structured presentation of Newton–Euler dynamic modeling that results in forward and backward equations in both fixed- and moving-coordinate systems. The Lagrange–Euler approach is applied to expand the model further, providing formalisms to model the variable moment of inertia later used to analyze the dynamics of aerial manipulators in contact with the environment. Using knowledge from sensor data, insights are presented into the ways in which linear, robust, and adaptive control techniques can be applied in aerial manipulation so as to tackle the real-world problems faced by scholars and engineers in the design and implementation of aerial robotics systems. The book is completed by path and trajectory planning with vision-based examples for tracking and manipulation.