Presents a wide range of graphical representations of some speech signals and allows current speech analysis techniques to be assessed and directly compared. Describes time-frequency representations, auditory modeling, neural networks, pitch and multi-channel analysis. The study of over 40 different analyses of speech is represented in myriad images found throughout.
Intelligent Speech Signal Processing investigates the utilization of speech analytics across several systems and real-world activities, including sharing data analytics, creating collaboration networks between several participants, and implementing video-conferencing in different application areas. Chapters focus on the latest applications of speech data analysis and management tools across different recording systems. The book emphasizes the multidisciplinary nature of the field, presenting different applications and challenges with extensive studies on the design, development and management of intelligent systems, neural networks and related machine learning techniques for speech signal processing.
This study proposes a new spectral representation called the Zeros of Z-Transform (ZZT), which is an all-zero representation of the z-transform of the signal. In addition, new chirp group delay processing techniques are developed for analysis of resonances of a signal. The combination of the ZZT representation with the chirp group delay processing algorithms provides a useful domain to study resonance characteristics of source and filter components of speech. Using the two representations, effective algorithms are developed for: source-tract decomposition of speech, glottal flow parameter estimation, formant tracking and feature extraction for speech recognition. The ZZT representation is mainly important for theoretical studies. Studying the ZZT of a signal is essential to be able to develop effective chirp group delay processing methods. Therefore, first the ZZT representation of the source-filter model of speech is studied for providing a theoretical background. We confirm through ZZT representation that anti-causality of the glottal flow signal introduces mixed-phase characteristics in speech signals. The ZZT of windowed speech signals is also studied since windowing cannot be avoided in practical signal processing algorithms and the effect of windowing on ZZT representation is drastic. We show that separate patterns exist in ZZT representations of windowed speech signals for the glottal flow and the vocal tract contributions. A decomposition method for source-tract separation is developed based on these patterns in ZZT. We define chirp group delay as group delay calculated on a circle other than the unit circle in z-plane. The need to compute group delay on a circle other than the unit circle comes from the fact that group delay spectra are often very noisy and cannot be easily processed for formant tracking purposes (the reasons are explained through ZZT representation). In this thesis, we propose methods to avoid such problems by modifying the ZZT of a signal and further computing the chirp group delay spectrum. New algorithms based on processing of the chirp group delay spectrum are developed for formant tracking and feature estimation for speech recognition. The proposed algorithms are compared to state-of-the-art techniques. Equivalent or higher efficiency is obtained for all proposed algorithms. The theoretical parts of the thesis further discuss a mixed-phase model for speech and phase processing problems in detail. Index Terms—spectral representation, source-filter separation, glottal flow estimation, formant tracking, zeros of z-transform, group delay processing, phase processing.
Compiled by an international array of musical and technical specialists, this book deals with some of the most important topics in modern musical signal processing. Beginning with basic concepts, and leading to advanced applications, it covers such essential areas as sound synthesis (including detailed studies of physical modelling and granular synthesis) ,control signal synthesis, sound transformation (including convolution), analysis/resynthesis (phase vocodor, wavelets, analysis by chaotic functions), object-oriented and artificial intelligence representations, musical interfaces and the integration of signal processing techniques in concert performance.
Discusses recent advances in the related technologies of multimedia computers, videophones, video-over-Internet, HDTV, digital satellite TV and interactive computer games. The text analyzes ways of achieving more effective navigation techniques, data management functions, and higher throughout networking. It synthesizes data on visual information venues, tracking the enormous commercial potential for new components and compatible systems.
Speech processing addresses various scientific and technological areas. It includes speech analysis and variable rate coding, in order to store or transmit speech. It also covers speech synthesis, especially from text, speech recognition, including speaker and language identification, and spoken language understanding. This book covers the following topics: how to realize speech production and perception systems, how to synthesize and understand speech using state-of-the-art methods in signal processing, pattern recognition, stochastic modelling computational linguistics and human factor studies.
This book constitutes the thoroughly refereed post-proceedings of the International Computer Music Modeling and Retrieval Symposium, CMMR 2004, held in Esbjerg, Denmark in May 2004. The 26 revised full papers presented were carefully selected during two rounds of reviewing and improvement. Due to the interdisciplinary nature of the area, the papers address a broad variety of topics. The papers are organized in topical sections on pitch and melody detection; rhythm, tempo, and beat; music generation and knowledge; music performance, rendering, and interfaces; music scores and synchronization; synthesis, timbre, and musical playing; music representation and retrieval; and music analysis.
This volume is the most comprehensive reference work on visual communications to date. An international group of well-known experts in the field provide up-to-date and in-depth contributions on topics such as fundamental theory, international standards for industrial applications, high definition television, optical communications networks, and VLSI design. The book includes information for learning about both the fundamentals of image/video compression as well as more advanced topics in visual communications research. In addition, the Handbook of Visual Communications explores the latest developments in the field, such as model-based image coding, and provides readers with insight into possible future developments. - Displays comprehensive coverage from fundamental theory to international standards and VLSI design - Includes 518 pages of contributions from well-known experts - Presents state-of-the-art knowledge--the most up-to-date and accurate information on various topics in the field - Provides an extensive overview of international standards for industrial applications