Spectroscopy and Computation of Hydrogen-BondedSystems

Spectroscopy and Computation of Hydrogen-BondedSystems

Author: Marek J. Wójcik

Publisher: John Wiley & Sons

Published: 2023-03-27

Total Pages: 548

ISBN-13: 3527349723

DOWNLOAD EBOOK

Comprehensive spectroscopic view of the state-of the-art in theoretical and experimental hydrogen bonding research Spectroscopy and Computation of Hydrogen-Bonded Systems includes diverse research efforts spanning the frontiers of hydrogen bonding as revealed through state-of-the-art spectroscopic and computational methods, covering a broad range of experimental and theoretical methodologies used to investigate and understand hydrogen bonding. The work explores the key quantitative relationships between fundamental vibrational frequencies and hydrogen-bond length/strength and provides an extensive reference for the advancement of scientific knowledge on hydrogen-bonded systems. Theoretical models of vibrational landscapes in hydrogen-bonded systems, as well as kindred studies designed to interpret intricate spectral features in gaseous complexes, liquids, crystals, ices, polymers, and nanocomposites, serve to elucidate the provenance of spectroscopic findings. Results of experimental and theoretical studies on multidimensional proton transfer are also presented. Edited by two highly qualified researchers in the field, sample topics covered in Spectroscopy and Computation of Hydrogen-Bonded Systems include: Quantum-mechanical treatments of tunneling-mediated pathways in enzyme catalysis and molecular-dynamics simulations of structure and dynamics in hydrogen-bonded systems Mechanisms of multiple proton-transfer pathways in hydrogen-bonded clusters and modern spectroscopic tools with synergistic quantum-chemical analyses Mechanistic investigations of deuterium kinetic isotope effects, ab initio path integral methods, and molecular-dynamics simulations Key relationships that exist between fundamental vibrational frequencies and hydrogen-bond length/strength Analogous spectroscopic and semi-empirical computational techniques examining larger hydrogen-bonded systems Reflecting the polymorphic nature of hydrogen bonding and bringing together the latest experimental and computational work in the field, Spectroscopy and Computation of Hydrogen-Bonded Systems is an essential resource for chemists and other scientists involved in projects or research that intersects with the topics covered within.


Vibrational Spectroscopy of Molecular Liquids and Solids

Vibrational Spectroscopy of Molecular Liquids and Solids

Author: S. Bratos

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 461

ISBN-13: 1461331110

DOWNLOAD EBOOK

This book has its or1g1n in a NATO Summer School organized from June 25 to July 7 1979, in Menton, France. The purpose of this School was a comparative study of the various aspects of vibra tional spectroscopy in molecular liquids and solids. This field has been rapidly expanding in the last decade; unfortunately, its development took place independently for liquids and for solids. In these circumstances, the comparison of the basic concepts and techniques used in these two branches of physics appeared as a necessity. The lectures given at the Menton Advanced Study Institute, as well as the exceptionally fruitful and lively discussions which followed them confirmed this point of view. The need of putting together these lectures, in the form of a monograph, clearly appeared during the ASI and the lecturers accepted to write down the material they presented at the Institute, improved thanks to the remarks of the participants. It is the result of this collective work which appears in the familiar Plenum Series.


Vibrational Spectroscopy

Vibrational Spectroscopy

Author: Dominique De Caro

Publisher: BoD – Books on Demand

Published: 2012-02-24

Total Pages: 182

ISBN-13: 9535101072

DOWNLOAD EBOOK

The infrared and Raman spectroscopy have applications in numerous fields, namely chemistry, physics, astronomy, biology, medicine, geology, mineralogy etc. This book provides some examples of the use of vibrational spectroscopy in supramolecular chemistry, inorganic chemistry, solid state physics, but also in the fields of molecule-based materials or organic-inorganic interfaces.


Vibrational Spectroscopy of Biological and Polymeric Materials

Vibrational Spectroscopy of Biological and Polymeric Materials

Author: Vasilis G. Gregoriou

Publisher: CRC Press

Published: 2005-11-14

Total Pages: 448

ISBN-13: 1420027549

DOWNLOAD EBOOK

Used primarily for characterizing polymers and biological systems, vibrational spectroscopy continues to uncover structural information pertinent to a growing number of applications. Vibrational Spectroscopy of Biological and Polymeric Materials compiles the latest developments in advanced infrared and Raman spectroscopic techniques that are


Ultrafast Infrared Vibrational Spectroscopy

Ultrafast Infrared Vibrational Spectroscopy

Author: Michael D. Fayer

Publisher: CRC Press

Published: 2013-03-04

Total Pages: 491

ISBN-13: 1466510137

DOWNLOAD EBOOK

The advent of laser-based sources of ultrafast infrared pulses has extended the study of very fast molecular dynamics to the observation of processes manifested through their effects on the vibrations of molecules. In addition, non-linear infrared spectroscopic techniques make it possible to examine intra- and intermolecular interactions and how such interactions evolve on very fast time scales, but also in some instances on very slow time scales. Ultrafast Infrared Vibrational Spectroscopy is an advanced overview of the field of ultrafast infrared vibrational spectroscopy based on the scientific research of the leading figures in the field. The book discusses experimental and theoretical topics reflecting the latest accomplishments and understanding of ultrafast infrared vibrational spectroscopy. Each chapter provides background, details of methods, and explication of a topic of current research interest. Experimental and theoretical studies cover topics as diverse as the dynamics of water and the dynamics and structure of biological molecules. Methods covered include vibrational echo chemical exchange spectroscopy, IR-Raman spectroscopy, time resolved sum frequency generation, and 2D IR spectroscopy. Edited by a recognized leader in the field and with contributions from top researchers, including experimentalists and theoreticians, this book presents the latest research methods and results. It will serve as an excellent resource for those new to the field, experts in the field, and individuals who want to gain an understanding of particular methods and research topics.


Hydrogen-Bonded Liquids

Hydrogen-Bonded Liquids

Author: J.C. Dore

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 439

ISBN-13: 9401132747

DOWNLOAD EBOOK

The study of liquids covers a wide range of scientific disciplines, primarily in physics and chemistry. As a result of this disparate activity the links between new developments in remote fields are seldom co-ordinated into a single conference. The objective of the present meeting was to gather together people with different forms of expertise. Previous ASI meetings on the liquid state have been held over an extended period and have occurred on a three-yearly basis. The first meeting in this series was on 'Structure and Dynamics of Liquids' in 1980 and was held on the island of Corsica. The next meeting on 'Molecular liquids: Dynamics and Interactions' was held in Florence in 1983 and was followed by 'Aqueous Solutions' at the Institut d'Etudes Scientifiques de Cargese in 1986. It therefore seemed a natural choice to select Cargese for the next meeting in 1989 and to choose a topic which emphasised a particular area of liquid state studies. Due to our own involvement in collaborative research we considered that 'Hydrogen-bonded liquids' would be an appropriate topic. One of its attractions, was that there was much new material coming from widely disparate investigations and it would be a convenient time to draw together the different strands. The particular interest in water was clearly central to this topic but it was thought desirable to set this development in the wider context of other systems in which hydrogen-bonding plays a significant role.


The Nature of the Hydrogen Bond

The Nature of the Hydrogen Bond

Author: Gastone Gilli

Publisher: OUP Oxford

Published: 2009-06-25

Total Pages: 330

ISBN-13: 0191580279

DOWNLOAD EBOOK

Hydrogen bond (H-bond) effects are known: it makes sea water liquid, joins cellulose microfibrils in trees, shapes DNA into genes and polypeptide chains into wool, hair, muscles or enzymes. Its true nature is less known and we may still wonder why O-H...O bond energies range from less than 1 to more than 30 kcal/mol without apparent reason. This H-bond puzzle is re-examined here from its very beginning and presented as an inclusive compilation of experimental H-bond energies and geometries. New concepts emerge from this analysis: new classes of systematically strong H-bonds (CAHBs and RAHBs: charge- and resonance-assisted H-bonds); full H-bond classification in six classes (the six chemical leitmotifs); and assessment of the covalent nature of strong H-bonds. This leads to three distinct but inter-consistent models able to rationalize the H-bond and predict its strength, based on classical VB theory, matching of donor-acceptor acid-base parameters (PA or pKa), or shape of the H-bond proton-transfer pathway. Applications survey a number of systems where strong H-bonds play an important functional role, namely drug-receptor binding, enzymatic catalysis, ion-transport through cell membranes, crystal design and molecular mechanisms of functional materials.


Vibrational Spectroscopy of Adsorbates

Vibrational Spectroscopy of Adsorbates

Author: R.F. Willis

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 195

ISBN-13: 3642886442

DOWNLOAD EBOOK

Over the past few years, there has been a growing awareness of the vibratio nal properties of solid surfaces and adsorbates due to a steady growth in the number of experimental techniques which have evolved with sufficient resolution and surface sensitivity. An understanding of the surface vibratio nal modes is of fundamental importance in many areas of the physics and chemistry of surfaces, most notably in the field of heterogeneous catalysis on metals and alloys. The present volume derives from a one day meeting of invited lectures, held under the auspices of the Thin Films and Surfaces Section of the Insti tute of Physics in the Cavendish Laboratory, University of Cambridge, 13 December 1979. The object was to bring together specialists from various diverse fields who would examine the wide variety of methods currently avail able for studying surface adsorbate vibrations. Since these methods cover several scientific disciplines, it was subsequently felt that it would be useful to provide a permanent record of the talks as a source lor future reference by workers in what is rapidly becoming an expanding field of',inter est in an increasing number of laboratories. The contributions, however, are not in any way meant to constitute exhaustive reviews.


Intermolecular Forces

Intermolecular Forces

Author: Pierre L. Huyskens

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 490

ISBN-13: 3642762603

DOWNLOAD EBOOK

The study of intermolecular forces began over one hundred years ago in 1873 with the famous thesis of van der Waals. In recent decades, knowledge of this field has expanded due to intensive research into both its theoretical and the experimental aspects. This is particularly true for the type of very strong cohesive force stressed in 1920 by Latimer and Rodebush: the hydrogen bond, a phenomenon already outlined in 1912 by Moore and Winemill. Hydrogen bonds exert a profound influence on most of the physical and chemical properties of the materials in which they are formed. Not only do they govern viscosity and electrical conductivity, they also intervene in the chemical reaction path which determines the kinetics of chemical processes. The properties of chemical substances depend to a large extent on intermolecular forces. In spite of this fundamental fact, too little attention is given to these properties both in research and in university teaching. For instance, in the field of pharmaceutical research, about 13000 compounds need to be studied in order to find a single new product that can be successfully marketed. The recognition of the need to optimize industrial research efficiency has led to a growing interest in promoting the study of inter molecular forces. Rising salary costs in industry have encou raged an interest in theoretical ideas which will lead to tailor made materials.