Controlling a system's vibrational behavior, whether for reducing harmful vibrations or for enhancing useful types, is critical to ensure safe and economical operation as well as longer structural and equipment lifetimes. A related issue is the effect of vibration on humans and their environment. Achieving control of vibration requires thorough und
Experimental Vibration Analysis for Civil Structures: Testing, Sensing, Monitoring, and Control covers a wide range of topics in the areas of vibration testing, instrumentation, and analysis of civil engineering and critical infrastructure. It explains how recent research, development, and applications in experimental vibration analysis of civil engineering structures have progressed significantly due to advancements in the fields of sensor and testing technologies, instrumentation, data acquisition systems, computer technology, computational modeling and simulation of large and complex civil infrastructure systems. The book also examines how cutting-edge artificial intelligence and data analytics can be applied to infrastructure systems. Features: Explains how recent technological developments have resulted in addressing the challenge of designing more resilient infrastructure Examines numerous research studies conducted by leading scholars in the field of infrastructure systems and civil engineering Presents the most emergent fields of civil engineering design, such as data analytics and Artificial Intelligence for the analysis and performance assessment of infrastructure systems and their resilience Emphasizes the importance of an interdisciplinary approach to develop the modeling, analysis, and experimental tools for designing more resilient and intelligent infrastructures Appropriate for practicing engineers and upper-level students, Experimental Vibration Analysis for Civil Structures: Testing, Sensing, Monitoring, and Control serves as a strategic roadmap for further research in the field of vibration testing and instrumentation of infrastructure systems.
Provides Typical Abstract Representations of Different Steps for Analyzing Any Dynamic SystemVibration and dynamics are common in everyday life, and the use of vibration measurements, tests, and analyses is becoming standard for various applications. Vibration Analysis, Instruments, and Signal Processing focuses on the basic understanding of vibrat
Noise and Vibration Analysis is a complete and practical guide that combines both signal processing and modal analysis theory with their practical application in noise and vibration analysis. It provides an invaluable, integrated guide for practicing engineers as well as a suitable introduction for students new to the topic of noise and vibration. Taking a practical learning approach, Brandt includes exercises that allow the content to be developed in an academic course framework or as supplementary material for private and further study. Addresses the theory and application of signal analysis procedures as they are applied in modern instruments and software for noise and vibration analysis Features numerous line diagrams and illustrations Accompanied by a web site at www.wiley.com/go/brandt with numerous MATLAB tools and examples. Noise and Vibration Analysis provides an excellent resource for researchers and engineers from automotive, aerospace, mechanical, or electronics industries who work with experimental or analytical vibration analysis and/or acoustics. It will also appeal to graduate students enrolled in vibration analysis, experimental structural dynamics, or applied signal analysis courses.
This edited volume presents selected contributions from the International Conference on Experimental Vibration Analysis of Civil Engineering Structures held in San Diego, California in 2017 (EVACES2017). The event brought together engineers, scientists, researchers, and practitioners, providing a forum for discussing and disseminating the latest developments and achievements in all major aspects of dynamic testing for civil engineering structures, including instrumentation, sources of excitation, data analysis, system identification, monitoring and condition assessment, in-situ and laboratory experiments, codes and standards, and vibration mitigation.
Nowadays, the engineering practice raises far more vibration problems than can be theoretically explained or modelled. Because Df this, measurements are used in almost all fields of industry, transportation and civil engineering in studies of mechanical and structural vibration. They are an invaluable tool for designing products and machines with high reliability and low noise level, vehicles and buildings with improved comfort and resistance to dynamic loads, as well as for obtaining increased safety of opera tion and optimum running parameters. In order to cope with the increasing demand for experimental measurement of vibration characteristics, young engineers and designers need an introductory book with emphasis on "what has to be measured" and "by what means" before learning "how measurements are done". The expertise to perform vibration measurements must be gained in time, with every new investi gation and studied problem . .A detailed presentation of instrumentation and measuring techniques is beyond the aim of this book. Such information can be found in product data sheets, application manuals and hand books supplied by equipment manufacturers. Only general princi ples and widely used methods are presented herein, in order to provide the reader with an overview of the instrumentation and techniques encountered in vibration measurement.