Design, Implementation, and Measurements of a High Speed Serial Link Equalizer

Design, Implementation, and Measurements of a High Speed Serial Link Equalizer

Author: Andrew John Evans

Publisher:

Published: 2012

Total Pages: 100

ISBN-13:

DOWNLOAD EBOOK

The advancements of semiconductor processing technology have led to the ability for computing platforms to operate on large amounts of data at very high clock speeds. To fully utilize this processing power the components must have data continually available for operation upon and transport to other system components. To enable this data requirement, high speed serial links have replaced slower parallel communication protocols. Serial interfaces inherently require fewer signals for communication and thus reduce the device pin count, area and cost. A serial communication interface can also be run at a higher frequency because the clock skew between channels is no longer an issue since the data transmitted on various channels is independent. Serial data transmission also comes with a set of drawbacks when signal integrity is considered. The data must propagate through a channel that induces unwanted effects onto the signals such as intersymbol interference. These channel effects must be understood and mitigated to successfully transmit data without creating bit errors upon reception at the target component. Previously developed adaptive equalization techniques have been used to filter the effects of intersymbol interference from the transmitted data in the signal. This report explores the modeling and implementation of a system comprised of a transmitter, channel, and receiver to understand how intersymbol interference can be removed through a decision-feedback equalizer realized in hardware. The equalizer design, implementation, and measurements are the main focus of this report and are based on previous works in the areas of integrated circuit testing, channel modeling, and equalizer design. Simulation results from a system modeled in Simulink are compared against the results from a hardware model implemented with an FPGA, analog to digital converter and discrete circuit elements. In both the software and hardware models, bit errors were eliminated for certain amounts of intersymbol interference when a receiver with decision-feedback equalization was used instead of a receiver without equalization.


FPGA-based Implementation of Signal Processing Systems

FPGA-based Implementation of Signal Processing Systems

Author: Roger Woods

Publisher: John Wiley & Sons

Published: 2017-05-01

Total Pages: 356

ISBN-13: 1119077958

DOWNLOAD EBOOK

An important working resource for engineers and researchers involved in the design, development, and implementation of signal processing systems The last decade has seen a rapid expansion of the use of field programmable gate arrays (FPGAs) for a wide range of applications beyond traditional digital signal processing (DSP) systems. Written by a team of experts working at the leading edge of FPGA research and development, this second edition of FPGA-based Implementation of Signal Processing Systems has been extensively updated and revised to reflect the latest iterations of FPGA theory, applications, and technology. Written from a system-level perspective, it features expert discussions of contemporary methods and tools used in the design, optimization and implementation of DSP systems using programmable FPGA hardware. And it provides a wealth of practical insights—along with illustrative case studies and timely real-world examples—of critical concern to engineers working in the design and development of DSP systems for radio, telecommunications, audio-visual, and security applications, as well as bioinformatics, Big Data applications, and more. Inside you will find up-to-date coverage of: FPGA solutions for Big Data Applications, especially as they apply to huge data sets The use of ARM processors in FPGAs and the transfer of FPGAs towards heterogeneous computing platforms The evolution of High Level Synthesis tools—including new sections on Xilinx's HLS Vivado tool flow and Altera's OpenCL approach Developments in Graphical Processing Units (GPUs), which are rapidly replacing more traditional DSP systems FPGA-based Implementation of Signal Processing Systems, 2nd Edition is an indispensable guide for engineers and researchers involved in the design and development of both traditional and cutting-edge data and signal processing systems. Senior-level electrical and computer engineering graduates studying signal processing or digital signal processing also will find this volume of great interest.


Software-Defined Radio for Engineers

Software-Defined Radio for Engineers

Author: Alexander M. Wyglinski

Publisher: Artech House

Published: 2018-04-30

Total Pages: 378

ISBN-13: 1630814598

DOWNLOAD EBOOK

Based on the popular Artech House classic, Digital Communication Systems Engineering with Software-Defined Radio, this book provides a practical approach to quickly learning the software-defined radio (SDR) concepts needed for work in the field. This up-to-date volume guides readers on how to quickly prototype wireless designs using SDR for real-world testing and experimentation. This book explores advanced wireless communication techniques such as OFDM, LTE, WLA, and hardware targeting. Readers will gain an understanding of the core concepts behind wireless hardware, such as the radio frequency front-end, analog-to-digital and digital-to-analog converters, as well as various processing technologies. Moreover, this volume includes chapters on timing estimation, matched filtering, frame synchronization message decoding, and source coding. The orthogonal frequency division multiplexing is explained and details about HDL code generation and deployment are provided. The book concludes with coverage of the WLAN toolbox with OFDM beacon reception and the LTE toolbox with downlink reception. Multiple case studies are provided throughout the book. Both MATLAB and Simulink source code are included to assist readers with their projects in the field.


The Design Warrior's Guide to FPGAs

The Design Warrior's Guide to FPGAs

Author: Clive Maxfield

Publisher: Elsevier

Published: 2004-06-16

Total Pages: 561

ISBN-13: 0080477135

DOWNLOAD EBOOK

Field Programmable Gate Arrays (FPGAs) are devices that provide a fast, low-cost way for embedded system designers to customize products and deliver new versions with upgraded features, because they can handle very complicated functions, and be reconfigured an infinite number of times. In addition to introducing the various architectural features available in the latest generation of FPGAs, The Design Warrior’s Guide to FPGAs also covers different design tools and flows. This book covers information ranging from schematic-driven entry, through traditional HDL/RTL-based simulation and logic synthesis, all the way up to the current state-of-the-art in pure C/C++ design capture and synthesis technology. Also discussed are specialist areas such as mixed hardward/software and DSP-based design flows, along with innovative new devices such as field programmable node arrays (FPNAs). Clive "Max" Maxfield is a bestselling author and engineer with a large following in the electronic design automation (EDA)and embedded systems industry. In this comprehensive book, he covers all the issues of interest to designers working with, or contemplating a move to, FPGAs in their product designs. While other books cover fragments of FPGA technology or applications this is the first to focus exclusively and comprehensively on FPGA use for embedded systems. First book to focus exclusively and comprehensively on FPGA use in embedded designs World-renowned best-selling author Will help engineers get familiar and succeed with this new technology by providing much-needed advice on choosing the right FPGA for any design project