Examine the Current State of the ScienceSurface water sampling programs across the globe have shown the presence of many different classes of medicines. The potential risks associated with the release of these medicines into the environment have become an increasingly important issue for environmental regulators. Effects of Veterinary Medicines in
Following the success of the first edition, this pioneering study of pharmaceuticals in the environment has been updated and greatly extended. It includes the status of research on pharmaceuticals in soil, with attention to terrestrial and aquatic environments as well as new substance categories such as tetracylines and chinolones and the latest results concerning contamination of the environment and risk reduction.
The use of drugs in food animal production has resulted in benefits throughout the food industry; however, their use has also raised public health safety concerns. The Use of Drugs in Food Animals provides an overview of why and how drugs are used in the major food-producing animal industriesâ€"poultry, dairy, beef, swine, and aquaculture. The volume discusses the prevalence of human pathogens in foods of animal origin. It also addresses the transfer of resistance in animal microbes to human pathogens and the resulting risk of human disease. The committee offers analysis and insight into these areas: Monitoring of drug residues. The book provides a brief overview of how the FDA and USDA monitor drug residues in foods of animal origin and describes quality assurance programs initiated by the poultry, dairy, beef, and swine industries. Antibiotic resistance. The committee reports what is known about this controversial problem and its potential effect on human health. The volume also looks at how drug use may be minimized with new approaches in genetics, nutrition, and animal management.
Reviews of Environmental Contamination and Toxicology provides detailed review articles concerned with aspects of chemical contaminants, including pesticides, in the total environment with toxicological considerations and consequences.
The U.S. veterinary medical profession contributes to society in diverse ways, from developing drugs and protecting the food supply to treating companion animals and investigating animal diseases in the wild. In a study of the issues related to the veterinary medical workforce, including demographics, workforce supply, trends affecting job availability, and capacity of the educational system to fill future demands, a National Research Council committee found that the profession faces important challenges in maintaining the economic sustainability of veterinary practice and education, building its scholarly foundations, and evolving veterinary service to meet changing societal needs. Many concerns about the profession came into focus following the outbreak of West Nile fever in 1999, and the subsequent outbreaks of SARS, monkeypox, bovine spongiform encephalopathy, highly pathogenic avian influenza, H1N1 influenza, and a variety of food safety and environmental issues heightened public concerns. They also raised further questions about the directions of veterinary medicine and the capacity of public health service the profession provides both in the United States and abroad. To address some of the problems facing the veterinary profession, greater public and private support for education and research in veterinary medicine is needed. The public, policymakers, and even medical professionals are frequently unaware of how veterinary medicine fundamentally supports both animal and human health and well-being. This report seeks to broaden the public's understanding and attempts to anticipate some of the needs and measures that are essential for the profession to fulfill given its changing roles in the 21st century.
An important reference for researchers in the pharmaceutical industry, environmentalists and policy makers wanting to better understand the impacts of pharmaceuticals on the environment.
Pharmaceuticals, due to their pseudo-persistence and biological activity as well as their extensive use in human and veterinary medicine, are a class of environmental contaminants that is of emerging concern. In contrast to some conventional pollutants, they are continuously delivered at low levels, which might give rise to toxicity even without high persistence rates. These chemicals are designed to have a specific physiological mode of action and to resist frequently inactivation before exerting their intended therapeutic effect. These features, among others, result in the bioaccumulation of pharmaceuticals which are responsible for toxic effects in aquatic and terrestrial ecosystems. It is extremely important to know how to remove them from the environment and/or how to implement procedures or treatments resulting in their biological inactivation. Although great advances have been made in their detection in aquatic matrices, there remains limited analytical methodologies available for the trace analysis of target and non-target pharmaceuticals in matrices such as soils, sediments, or biota. There are still many gaps in the data on their fate and behavior in the environment as well as on their threats to ecological and human health. This book has included nine current research and three review articles in this field.
Research in veterinary science is critical for the health and well-being of animals, including humans. Food safety, emerging infectious diseases, the development of new therapies, and the possibility of bioterrorism are examples of issues addressed by veterinary science that have an impact on both human and animal health. However, there is a lack of scientists engaged in veterinary research. Too few veterinarians pursue research careers, and there is a shortage of facilities and funding for conducting research. This report identifies questions and issues that veterinary research can help to address, and discusses the scientific expertise and infrastructure needed to meet the most critical research needs. The report finds that there is an urgent need to provide adequate resources for investigators, training programs, and facilities involved in veterinary research.
Emerging infectious diseases are often due to environmental disruption, which exposes microbes to a different niche that selects for new virulence traits and facilitates transmission between animals and humans. Thus, health of humans also depends upon health of animals and the environment – a concept called One Health. This book presents core concepts, compelling evidence, successful applications, and remaining challenges of One Health approaches to thwarting the threat of emerging infectious disease. Written by scientists working in the field, this book will provide a series of "stories" about how disruption of the environment and transmission from animal hosts is responsible for emerging human and animal diseases. Explains the concept of One Health and the history of the One Health paradigm shift. Traces the emergence of devastating new diseases in both animals and humans. Presents case histories of notable, new zoonoses, including West Nile virus, hantavirus, Lyme disease, SARS, and salmonella. Links several epidemic zoonoses with the environmental factors that promote them. Offers insight into the mechanisms of microbial evolution toward pathogenicity. Discusses the many causes behind the emergence of antibiotic resistance. Presents new technologies and approaches for public health disease surveillance. Offers political and bureaucratic strategies for promoting the global acceptance of One Health.
The human–animal bond has evolved and diversi?ed down the ages. Dogs, cats and even horses, have long ful?lled the role of faithful companion and indeed, as exempli?ed by the introduction of seeing and hearing dogs, there may be a critical level of co-dependency between the species. In the twenty-?rst century, the animal types that are kept as pets in many parts of the world are extensive ranging from reptiles through rodents to ruminants and beyond. As would be predicted by the nature of the relationship, the approach to treatment of a companion animal is often closely aligned to that which would have been offered to their owner. However, an increasing awareness of welfare issues, such as the recognition that animals expe- ence pain and the proven bene?ts of disease prevention in intensive farming units, together with the growth in zoos and wildlife parks, has increased the likelihood of food producing and non-domesticated animals receiving medicinal products during their life-time. Although many of the individual drugs or classes of drugs administered to animals are the same as, or derived from, those given to man, the safe and effective use of drugs in animals often cannot be achieved by simply transposing knowledge of drug action on, or behaviour in, the body from one species to another. The impact of the anatomical, physiological and pathophysiological variability that spans the animal kingdom can often profoundly alter drug response.