Vector Bundles in Algebraic Geometry

Vector Bundles in Algebraic Geometry

Author: N. J. Hitchin

Publisher: Cambridge University Press

Published: 1995-03-16

Total Pages: 359

ISBN-13: 0521498783

DOWNLOAD EBOOK

This book is a collection of survey articles by the main speakers at the 1993 Durham symposium on vector bundles in algebraic geometry.


Positivity in Algebraic Geometry I

Positivity in Algebraic Geometry I

Author: R.K. Lazarsfeld

Publisher: Springer Science & Business Media

Published: 2004-08-24

Total Pages: 414

ISBN-13: 9783540225331

DOWNLOAD EBOOK

This two volume work on Positivity in Algebraic Geometry contains a contemporary account of a body of work in complex algebraic geometry loosely centered around the theme of positivity. Topics in Volume I include ample line bundles and linear series on a projective variety, the classical theorems of Lefschetz and Bertini and their modern outgrowths, vanishing theorems, and local positivity. Volume II begins with a survey of positivity for vector bundles, and moves on to a systematic development of the theory of multiplier ideals and their applications. A good deal of this material has not previously appeared in book form, and substantial parts are worked out here in detail for the first time. At least a third of the book is devoted to concrete examples, applications, and pointers to further developments. Volume I is more elementary than Volume II, and, for the most part, it can be read without access to Volume II.


Representations of Fundamental Groups of Algebraic Varieties

Representations of Fundamental Groups of Algebraic Varieties

Author: Kang Zuo

Publisher: Springer

Published: 2006-11-14

Total Pages: 142

ISBN-13: 3540484248

DOWNLOAD EBOOK

Using harmonic maps, non-linear PDE and techniques from algebraic geometry this book enables the reader to study the relation between fundamental groups and algebraic geometry invariants of algebraic varieties. The reader should have a basic knowledge of algebraic geometry and non-linear analysis. This book can form the basis for graduate level seminars in the area of topology of algebraic varieties. It also contains present new techniques for researchers working in this area.


Moduli of Vector Bundles

Moduli of Vector Bundles

Author: Masaki Maruyama

Publisher: CRC Press

Published: 2023-05-31

Total Pages: 324

ISBN-13: 1000950700

DOWNLOAD EBOOK

"Contains papers presented at the 35th Taniguchi International Symposium held recently in Sanda and Kyoto, Japan. Details the latest developments concerning moduli spaces of vector bundles or instantons and their application. Covers a broad array of topics in both differential and algebraic geometry."


Cohomology of Vector Bundles and Syzygies

Cohomology of Vector Bundles and Syzygies

Author: Jerzy Weyman

Publisher: Cambridge University Press

Published: 2003-06-09

Total Pages: 404

ISBN-13: 9780521621977

DOWNLOAD EBOOK

The central theme of this book is an exposition of the geometric technique of calculating syzygies. It is written from a point of view of commutative algebra, and without assuming any knowledge of representation theory the calculation of syzygies of determinantal varieties is explained. The starting point is a definition of Schur functors, and these are discussed from both an algebraic and geometric point of view. Then a chapter on various versions of Bott's Theorem leads on to a careful explanation of the technique itself, based on a description of the direct image of a Koszul complex. Applications to determinantal varieties follow, plus there are also chapters on applications of the technique to rank varieties for symmetric and skew symmetric tensors of arbitrary degree, closures of conjugacy classes of nilpotent matrices, discriminants and resultants. Numerous exercises are included to give the reader insight into how to apply this important method.


Lectures on Vector Bundles

Lectures on Vector Bundles

Author: J. Le Potier

Publisher: Cambridge University Press

Published: 1997-01-28

Total Pages: 260

ISBN-13: 9780521481823

DOWNLOAD EBOOK

This work consists of two sections on the moduli spaces of vector bundles. The first part tackles the classification of vector bundles on algebraic curves. The author also discusses the construction and elementary properties of the moduli spaces of stable bundles. In particular Le Potier constructs HilbertSHGrothendieck schemes of vector bundles, and treats Mumford's geometric invariant theory. The second part centers on the structure of the moduli space of semistable sheaves on the projective plane. The author sketches existence conditions for sheaves of given rank, and Chern class and construction ideas in the general context of projective algebraic surfaces. Professor Le Potier provides a treatment of vector bundles that will be welcomed by experienced algebraic geometers and novices alike.


Differential Geometry of Complex Vector Bundles

Differential Geometry of Complex Vector Bundles

Author: Shoshichi Kobayashi

Publisher: Princeton University Press

Published: 2014-07-14

Total Pages: 317

ISBN-13: 1400858682

DOWNLOAD EBOOK

Holomorphic vector bundles have become objects of interest not only to algebraic and differential geometers and complex analysts but also to low dimensional topologists and mathematical physicists working on gauge theory. This book, which grew out of the author's lectures and seminars in Berkeley and Japan, is written for researchers and graduate students in these various fields of mathematics. Originally published in 1987. The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These editions preserve the original texts of these important books while presenting them in durable paperback and hardcover editions. The goal of the Princeton Legacy Library is to vastly increase access to the rich scholarly heritage found in the thousands of books published by Princeton University Press since its founding in 1905.


A Tribute to C.S. Seshadri

A Tribute to C.S. Seshadri

Author: Venkatrama Lakshmibai

Publisher: Springer Science & Business Media

Published: 2003-07-24

Total Pages: 598

ISBN-13: 9783764304447

DOWNLOAD EBOOK

C.S. Seshadri turned seventy on the 29th of February, 2002. To mark this occasion, a symposium was held in Chennai, India, where some of his colleagues gave expository talks highlighting Seshadri's contributions to mathematics. This volume includes expanded texts of these talks as well as research and expository papers on geometry and representation theory. It will serve as an excellent reference for researchers and students in these areas.


Algebraic Curves and One-Dimensional Fields

Algebraic Curves and One-Dimensional Fields

Author: Fedor Bogomolov

Publisher: American Mathematical Soc.

Published: 2002

Total Pages: 229

ISBN-13: 0821828622

DOWNLOAD EBOOK

This text covers the essential topics in the geometry of algebraic curves, such as line and vector bundles, the Riemann-Roch Theorem, divisors, coherent sheaves, and zeroth and first cohomology groups. It demonstrates how curves can act as a natural introduction to algebraic geometry.