Variational Problems in Topology

Variational Problems in Topology

Author: A.T. Fomenko

Publisher: Routledge

Published: 2019-06-21

Total Pages: 290

ISBN-13: 1351405675

DOWNLOAD EBOOK

Many of the modern variational problems of topology arise in different but overlapping fields of scientific study: mechanics, physics and mathematics. In this work, Professor Fomenko offers a concise and clear explanation of some of these problems (both solved and unsolved), using current methods of analytical topology. His book falls into three interrelated sections. The first gives an elementary introduction to some of the most important concepts of topology used in modern physics and mechanics: homology and cohomology, and fibration. The second investigates the significant role of Morse theory in modern aspects of the topology of smooth manifolds, particularly those of three and four dimensions. The third discusses minimal surfaces and harmonic mappings, and presents a number of classic physical experiments that lie at the foundations of modern understanding of multidimensional variational calculus. The author's skilful exposition of these topics and his own graphic illustrations give an unusual motivation to the theory expounded, and his work is recommended reading for specialists and non-specialists alike, involved in the fields of physics and mathematics at both undergraduate and graduate levels.


Topological Methods for Variational Problems with Symmetries

Topological Methods for Variational Problems with Symmetries

Author: Thomas Bartsch

Publisher: Springer

Published: 2006-11-15

Total Pages: 162

ISBN-13: 3540480994

DOWNLOAD EBOOK

Symmetry has a strong impact on the number and shape of solutions to variational problems. This has been observed, for instance, in the search for periodic solutions of Hamiltonian systems or of the nonlinear wave equation; when one is interested in elliptic equations on symmetric domains or in the corresponding semiflows; and when one is looking for "special" solutions of these problems. This book is concerned with Lusternik-Schnirelmann theory and Morse-Conley theory for group invariant functionals. These topological methods are developed in detail with new calculations of the equivariant Lusternik-Schnirelmann category and versions of the Borsuk-Ulam theorem for very general classes of symmetry groups. The Morse-Conley theory is applied to bifurcation problems, in particular to the bifurcation of steady states and hetero-clinic orbits of O(3)-symmetric flows; and to the existence of periodic solutions nearequilibria of symmetric Hamiltonian systems. Some familiarity with the usualminimax theory and basic algebraic topology is assumed.


Variational Methods for Structural Optimization

Variational Methods for Structural Optimization

Author: Andrej Cherkaev

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 561

ISBN-13: 1461211883

DOWNLOAD EBOOK

This book bridges a gap between a rigorous mathematical approach to variational problems and the practical use of algorithms of structural optimization in engineering applications. The foundations of structural optimization are presented in sufficiently simple form as to make them available for practical use.


Variational Methods For Strongly Indefinite Problems

Variational Methods For Strongly Indefinite Problems

Author: Yanheng Ding

Publisher: World Scientific

Published: 2007-07-30

Total Pages: 177

ISBN-13: 9814474509

DOWNLOAD EBOOK

This unique book focuses on critical point theory for strongly indefinite functionals in order to deal with nonlinear variational problems in areas such as physics, mechanics and economics. With the original ingredients of Lipschitz partitions of unity of gage spaces (nonmetrizable spaces), Lipschitz normality, and sufficient conditions for the normality, as well as existence-uniqueness of flow of ODE on gage spaces, the book presents for the first time a deformation theory in locally convex topological vector spaces. It also offers satisfying variational settings for homoclinic-type solutions to Hamiltonian systems, Schrödinger equations, Dirac equations and diffusion systems, and describes recent developments in studying these problems. The concepts and methods used open up new topics worthy of in-depth exploration, and link the subject with other branches of mathematics, such as topology and geometry, providing a perspective for further studies in these areas. The analytical framework can be used to handle more infinite-dimensional Hamiltonian systems.


Variational Analysis

Variational Analysis

Author: R. Tyrrell Rockafellar

Publisher: Springer Science & Business Media

Published: 2009-06-26

Total Pages: 747

ISBN-13: 3642024319

DOWNLOAD EBOOK

From its origins in the minimization of integral functionals, the notion of variations has evolved greatly in connection with applications in optimization, equilibrium, and control. This book develops a unified framework and provides a detailed exposition of variational geometry and subdifferential calculus in their current forms beyond classical and convex analysis. Also covered are set-convergence, set-valued mappings, epi-convergence, duality, and normal integrands.


Branching Solutions to One-dimensional Variational Problems

Branching Solutions to One-dimensional Variational Problems

Author: Alexander O. Ivanov

Publisher: World Scientific

Published: 2001

Total Pages: 365

ISBN-13: 9812810714

DOWNLOAD EBOOK

This book deals with the new class of one-dimensional variational problems OCo the problems with branching solutions. Instead of extreme curves (mappings of a segment to a manifold) we investigate extreme networks, which are mappings of graphs (one-dimensional cell complexes) to a manifold. Various applications of the approach are presented, such as several generalizations of the famous Steiner problem of finding the shortest network spanning given points of the plane. Contents: Preliminary Results; Networks Extremality Criteria; Linear Networks in R N; Extremals of Length Type Functionals: The Case of Parametric Networks; Extremals of Functionals Generated by Norms. Readership: Researchers in differential geometry and topology."


Lectures on Geometric Variational Problems

Lectures on Geometric Variational Problems

Author: Seiki Nishikawa

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 160

ISBN-13: 4431684026

DOWNLOAD EBOOK

In this volume are collected notes of lectures delivered at the First In ternational Research Institute of the Mathematical Society of Japan. This conference, held at Tohoku University in July 1993, was devoted to geometry and global analysis. Subsequent to the conference, in answer to popular de mand from the participants, it was decided to publish the notes of the survey lectures. Written by the lecturers themselves, all experts in their respective fields, these notes are here presented in a single volume. It is hoped that they will provide a vivid account of the current research, from the introduc tory level up to and including the most recent results, and will indicate the direction to be taken by future researeh. This compilation begins with Jean-Pierre Bourguignon's notes entitled "An Introduction to Geometric Variational Problems," illustrating the gen eral framework of the field with many examples and providing the reader with a broad view of the current research. Following this, Kenji Fukaya's notes on "Geometry of Gauge Fields" are concerned with gauge theory and its applications to low-dimensional topology, without delving too deeply into technical detail. Special emphasis is placed on explaining the ideas of infi nite dimensional geometry that, in the literature, are often hidden behind rigorous formulations or technical arguments.


Visual Geometry and Topology

Visual Geometry and Topology

Author: Anatolij T. Fomenko

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 338

ISBN-13: 3642762352

DOWNLOAD EBOOK

Geometry and topology are strongly motivated by the visualization of ideal objects that have certain special characteristics. A clear formulation of a specific property or a logically consistent proof of a theorem often comes only after the mathematician has correctly "seen" what is going on. These pictures which are meant to serve as signposts leading to mathematical understanding, frequently also contain a beauty of their own. The principal aim of this book is to narrate, in an accessible and fairly visual language, about some classical and modern achievements of geometry and topology in both intrinsic mathematical problems and applications to mathematical physics. The book starts from classical notions of topology and ends with remarkable new results in Hamiltonian geometry. Fomenko lays special emphasis upon visual explanations of the problems and results and downplays the abstract logical aspects of calculations. As an example, readers can very quickly penetrate into the new theory of topological descriptions of integrable Hamiltonian differential equations. The book includes numerous graphical sheets drawn by the author, which are presented in special sections of "Visual material". These pictures illustrate the mathematical ideas and results contained in the book. Using these pictures, the reader can understand many modern mathematical ideas and methods. Although "Visual Geometry and Topology" is about mathematics, Fomenko has written and illustrated this book so that students and researchers from all the natural sciences and also artists and art students will find something of interest within its pages.


Geometrical Methods in Variational Problems

Geometrical Methods in Variational Problems

Author: N.A. Bobylov

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 556

ISBN-13: 9401146292

DOWNLOAD EBOOK

This self-contained monograph presents methods for the investigation of nonlinear variational problems. These methods are based on geometric and topological ideas such as topological index, degree of a mapping, Morse-Conley index, Euler characteristics, deformation invariant, homotopic invariant, and the Lusternik-Shnirelman category. Attention is also given to applications in optimisation, mathematical physics, control, and numerical methods. Audience: This volume will be of interest to specialists in functional analysis and its applications, and can also be recommended as a text for graduate and postgraduate-level courses in these fields.


Calculus of Variations with Applications

Calculus of Variations with Applications

Author: George McNaught Ewing

Publisher: Courier Corporation

Published: 1985-01-01

Total Pages: 355

ISBN-13: 0486648567

DOWNLOAD EBOOK

Applications-oriented introduction to variational theory develops insight and promotes understanding of specialized books and research papers. Suitable for advanced undergraduate and graduate students as a primary or supplementary text. 1969 edition.