Calculus of Variations and Optimal Control Theory

Calculus of Variations and Optimal Control Theory

Author: Daniel Liberzon

Publisher: Princeton University Press

Published: 2012

Total Pages: 255

ISBN-13: 0691151873

DOWNLOAD EBOOK

This textbook offers a concise yet rigorous introduction to calculus of variations and optimal control theory, and is a self-contained resource for graduate students in engineering, applied mathematics, and related subjects. Designed specifically for a one-semester course, the book begins with calculus of variations, preparing the ground for optimal control. It then gives a complete proof of the maximum principle and covers key topics such as the Hamilton-Jacobi-Bellman theory of dynamic programming and linear-quadratic optimal control. Calculus of Variations and Optimal Control Theory also traces the historical development of the subject and features numerous exercises, notes and references at the end of each chapter, and suggestions for further study. Offers a concise yet rigorous introduction Requires limited background in control theory or advanced mathematics Provides a complete proof of the maximum principle Uses consistent notation in the exposition of classical and modern topics Traces the historical development of the subject Solutions manual (available only to teachers) Leading universities that have adopted this book include: University of Illinois at Urbana-Champaign ECE 553: Optimum Control Systems Georgia Institute of Technology ECE 6553: Optimal Control and Optimization University of Pennsylvania ESE 680: Optimal Control Theory University of Notre Dame EE 60565: Optimal Control


Optimal Control

Optimal Control

Author: Arturo Locatelli

Publisher: Springer Science & Business Media

Published: 2001-03

Total Pages: 318

ISBN-13: 9783764364083

DOWNLOAD EBOOK

From the reviews: "The style of the book reflects the author’s wish to assist in the effective learning of optimal control by suitable choice of topics, the mathematical level used, and by including numerous illustrated examples. . . .In my view the book suits its function and purpose, in that it gives a student a comprehensive coverage of optimal control in an easy-to-read fashion." —Measurement and Control


A Primer on the Calculus of Variations and Optimal Control Theory

A Primer on the Calculus of Variations and Optimal Control Theory

Author: Mike Mesterton-Gibbons

Publisher: American Mathematical Soc.

Published: 2009

Total Pages: 274

ISBN-13: 0821847724

DOWNLOAD EBOOK

The calculus of variations is used to find functions that optimize quantities expressed in terms of integrals. Optimal control theory seeks to find functions that minimize cost integrals for systems described by differential equations. This book is an introduction to both the classical theory of the calculus of variations and the more modern developments of optimal control theory from the perspective of an applied mathematician. It focuses on understanding concepts and how to apply them. The range of potential applications is broad: the calculus of variations and optimal control theory have been widely used in numerous ways in biology, criminology, economics, engineering, finance, management science, and physics. Applications described in this book include cancer chemotherapy, navigational control, and renewable resource harvesting. The prerequisites for the book are modest: the standard calculus sequence, a first course on ordinary differential equations, and some facility with the use of mathematical software. It is suitable for an undergraduate or beginning graduate course, or for self study. It provides excellent preparation for more advanced books and courses on the calculus of variations and optimal control theory.


The Calculus of Variations and Optimal Control

The Calculus of Variations and Optimal Control

Author: George Leitmann

Publisher: Springer Science & Business Media

Published: 2013-06-29

Total Pages: 313

ISBN-13: 148990333X

DOWNLOAD EBOOK

When the Tyrian princess Dido landed on the North African shore of the Mediterranean sea she was welcomed by a local chieftain. He offered her all the land that she could enclose between the shoreline and a rope of knotted cowhide. While the legend does not tell us, we may assume that Princess Dido arrived at the correct solution by stretching the rope into the shape of a circular arc and thereby maximized the area of the land upon which she was to found Carthage. This story of the founding of Carthage is apocryphal. Nonetheless it is probably the first account of a problem of the kind that inspired an entire mathematical discipline, the calculus of variations and its extensions such as the theory of optimal control. This book is intended to present an introductory treatment of the calculus of variations in Part I and of optimal control theory in Part II. The discussion in Part I is restricted to the simplest problem of the calculus of variations. The topic is entirely classical; all of the basic theory had been developed before the turn of the century. Consequently the material comes from many sources; however, those most useful to me have been the books of Oskar Bolza and of George M. Ewing. Part II is devoted to the elementary aspects of the modern extension of the calculus of variations, the theory of optimal control of dynamical systems.


Variational Methods in Theoretical Mechanics

Variational Methods in Theoretical Mechanics

Author: J.T. Oden

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 319

ISBN-13: 364268811X

DOWNLOAD EBOOK

This is a textbook written for use in a graduate-level course for students of mechanics and engineering science. It is designed to cover the essential features of modern variational methods and to demonstrate how a number of basic mathematical concepts can be used to produce a unified theory of variational mechanics. As prerequisite to using this text, we assume that the student is equipped with an introductory course in functional analysis at a level roughly equal to that covered, for example, in Kolmogorov and Fomin (Functional Analysis, Vol. I, Graylock, Rochester, 1957) and possibly a graduate-level course in continuum mechanics. Numerous references to supplementary material are listed throughout the book. We are indebted to Professor Jim Douglas of the University of Chicago, who read an earlier version of the manuscript and whose detailed suggestions were extremely helpful in preparing the final draft. We also gratefully acknowedge that much of our own research work on va ri at i ona 1 theory was supported by the U. S. Ai r Force Offi ce of Scientific Research. We are indebted to Mr. Ming-Goei Sheu for help in proofreading. Finally, we wish to express thanks to Mrs. Marilyn Gude for her excellent and painstaking job of typing the manuscript. This revised edition contains only minor revisions of the first. Some misprints and errors have been corrected, and some sections were deleted, which were felt to be out of date.


Variational Calculus with Elementary Convexity

Variational Calculus with Elementary Convexity

Author: J.L. Troutman

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 373

ISBN-13: 1468401580

DOWNLOAD EBOOK

The calculus of variations, whose origins can be traced to the works of Aristotle and Zenodoros, is now Ii vast repository supplying fundamental tools of exploration not only to the mathematician, but-as evidenced by current literature-also to those in most branches of science in which mathematics is applied. (Indeed, the macroscopic statements afforded by variational principles may provide the only valid mathematical formulation of many physical laws. ) As such, it retains the spirit of natural philosophy common to most mathematical investigations prior to this century. How ever, it is a discipline in which a single symbol (b) has at times been assigned almost mystical powers of operation and discernment, not readily subsumed into the formal structures of modern mathematics. And it is a field for which it is generally supposed that most questions motivating interest in the subject will probably not be answerable at the introductory level of their formulation. In earlier articles,1,2 it was shown through several examples that a complete characterization of the solution of optimization problems may be available by elementary methods, and it is the purpose of this work to explore further the convexity which underlay these individual successes in the context of a full introductory treatment of the theory of the variational calculus. The required convexity is that determined through Gateaux variations, which can be defined in any real linear space and which provide an unambiguous foundation for the theory.


Variational Calculus and Optimal Control

Variational Calculus and Optimal Control

Author: John L. Troutman

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 471

ISBN-13: 1461207371

DOWNLOAD EBOOK

An introduction to the variational methods used to formulate and solve mathematical and physical problems, allowing the reader an insight into the systematic use of elementary (partial) convexity of differentiable functions in Euclidian space. By helping students directly characterize the solutions for many minimization problems, the text serves as a prelude to the field theory for sufficiency, laying as it does the groundwork for further explorations in mathematics, physics, mechanical and electrical engineering, as well as computer science.