The last few decades have seen a spectacular growth in the use of variational methods, one of the most classic and elegant methods in physical and mathematical sciences, as powerful tools of optimization and numerical analysis. The tremendous accumulation of information on the use of variational methods in the area of the geosciences, which includes meteorology, oceanography, hydrology, geophysics and seismology, indicated the need for the first symposium on Variational Methods in Geosciences to be organized and held in Norman on October 15-17, 1985. The value of this symposium was enhanced by the number of stimulating and informative papers presented.
Data Assimilation for the Geosciences: From Theory to Application brings together all of the mathematical,statistical, and probability background knowledge needed to formulate data assimilation systems in one place. It includes practical exercises for understanding theoretical formulation and presents some aspects of coding the theory with a toy problem. The book also demonstrates how data assimilation systems are implemented in larger scale fluid dynamical problems related to the atmosphere, oceans, as well as the land surface and other geophysical situations. It offers a comprehensive presentation of the subject, from basic principles to advanced methods, such as Particle Filters and Markov-Chain Monte-Carlo methods. Additionally, Data Assimilation for the Geosciences: From Theory to Application covers the applications of data assimilation techniques in various disciplines of the geosciences, making the book useful to students, teachers, and research scientists. Includes practical exercises, enabling readers to apply concepts in a theoretical formulation Offers explanations for how to code certain parts of the theory Presents a step-by-step guide on how, and why, data assimilation works and can be used
Data assimilation is the combination of information from observations and models of a particular physical system in order to get the best possible estimate of the state of that system. The technique has wide applications across a range of earth sciences, a major application being the production of operational weather forecasts. Others include oceanography, atmospheric chemistry, climate studies, and hydrology. Data Assimilation for the Earth System is a comprehensive survey of both the theory of data assimilation and its application in a range of earth system sciences. Data assimilation is a key technique in the analysis of remote sensing observations and is thus particularly useful for those analysing the wealth of measurements from recent research satellites. This book is suitable for postgraduate students and those working on the application of data assimilation in meteorology, oceanography and other earth sciences.
This well-thought-out book covers the fundamentals of nonlinear analysis, with a particular focus on variational methods and their applications. Starting from preliminaries in functional analysis, it expands in several directions such as Banach spaces, fixed point theory, nonsmooth analysis, minimax theory, variational calculus and inequalities, critical point theory, monotone, maximal monotone and pseudomonotone operators, and evolution problems.
Data assimilation aims at determining as accurately as possible the state of a dynamical system by combining heterogeneous sources of information in an optimal way. Generally speaking, the mathematical methods of data assimilation describe algorithms for forming optimal combinations of observations of a system, a numerical model that describes its evolution, and appropriate prior information. Data assimilation has a long history of application to high-dimensional geophysical systems dating back to the 1960s, with application to the estimation of initial conditions for weather forecasts. It has become a major component of numerical forecasting systems in geophysics, and an intensive field of research, with numerous additional applications in oceanography, atmospheric chemistry, and extensions to other geophysical sciences. The physical complexity and the high dimensionality of geophysical systems have led the community of geophysics to make significant contributions to the fundamental theory of data assimilation. This book gathers notes from lectures and seminars given by internationally recognized scientists during a three-week school held in the Les Houches School of physics in 2012, on theoretical and applied data assimilation. It is composed of (i) a series of main lectures, presenting the fundamentals of the most commonly used methods, and the information theory background required to understand and evaluate the role of observations; (ii) a series of specialized lectures, addressing various aspects of data assimilation in detail, from the most recent developments of the theory to the specificities of various thematic applications.
Data Assimilation for the Geosciences: From Theory to Application, Second Edition brings together all of the mathematical and statistical background knowledge needed to formulate data assimilation systems into one place. It includes practical exercises enabling readers to apply theory in both a theoretical formulation as well as teach them how to code the theory with toy problems to verify their understanding. It also demonstrates how data assimilation systems are implemented in larger scale fluid dynamical problems related to land surface, the atmosphere, ocean and other geophysical situations. The second edition of Data Assimilation for the Geosciences has been revised with up to date research that is going on in data assimilation, as well as how to apply the techniques. The new edition features an introduction of how machine learning and artificial intelligence are interfacing and aiding data assimilation. In addition to appealing to students and researchers across the geosciences, this now also appeals to new students and scientists in the field of data assimilation as it will now have even more information on the techniques, research, and applications, consolidated into one source. - Includes practical exercises and solutions enabling readers to apply theory in both a theoretical formulation as well as enabling them to code theory - Provides the mathematical and statistical background knowledge needed to formulate data assimilation systems into one place - New to this edition: covers new topics such as Observing System Experiments (OSE) and Observing System Simulation Experiments; and expanded approaches for machine learning and artificial intelligence
This book contains the most recent progress in data assimilation in meteorology, oceanography and hydrology including land surface. It spans both theoretical and applicative aspects with various methodologies such as variational, Kalman filter, ensemble, Monte Carlo and artificial intelligence methods. Besides data assimilation, other important topics are also covered including targeting observation, sensitivity analysis, and parameter estimation. The book will be useful to individual researchers as well as graduate students for a reference in the field of data assimilation.
This book constitutes the refereed proceedings of the 4th International Conference on Scale Space Methods and Variational Methods in Computer Vision, SSVM 2013, held in Schloss Seggau near Graz, Austria, in June 2013. The 42 revised full papers presented were carefully reviewed and selected 69 submissions. The papers are organized in topical sections on image denoising and restoration, image enhancement and texture synthesis, optical flow and 3D reconstruction, scale space and partial differential equations, image and shape analysis, and segmentation.
This volume is a collection of articles in memory of Jacques-Louis Lions, a leading mathematician and the founder of the Contemporary French Applied Mathematics School. The contributions have been written by his friends, colleagues and students. The book concerns many important results in analysis, geometry, numerical methods, fluid mechanics, control theory, etc.