Variational and Optimal Control Problems on Unbounded Domains

Variational and Optimal Control Problems on Unbounded Domains

Author: Gershon Wolansky

Publisher: American Mathematical Soc.

Published: 2014-07-01

Total Pages: 266

ISBN-13: 147041077X

DOWNLOAD EBOOK

This volume contains the proceedings of the workshop on Variational and Optimal Control Problems on Unbounded Domains, held in memory of Arie Leizarowitz, from January 9-12, 2012, in Haifa, Israel. The workshop brought together a select group of worldwide experts in optimal control theory and the calculus of variations, working on problems on unbounded domains. The papers in this volume cover many different areas of optimal control and its applications. Topics include needle variations in infinite-horizon optimal control, Lyapunov stability with some extensions, small noise large time asymptotics for the normalized Feynman-Kac semigroup, linear-quadratic optimal control problems with state delays, time-optimal control of wafer stage positioning, second order optimality conditions in optimal control, state and time transformations of infinite horizon problems, turnpike properties of dynamic zero-sum games, and an infinite-horizon variational problem on an infinite strip. This book is co-published with Bar-Ilan University (Ramat-Gan, Israel).


Variational Analysis and Generalized Differentiation II

Variational Analysis and Generalized Differentiation II

Author: Boris S. Mordukhovich

Publisher: Springer Science & Business Media

Published: 2006-03-02

Total Pages: 630

ISBN-13: 3540312463

DOWNLOAD EBOOK

Comprehensive and state-of-the art study of the basic concepts and principles of variational analysis and generalized differentiation in both finite-dimensional and infinite-dimensional spaces Presents numerous applications to problems in the optimization, equilibria, stability and sensitivity, control theory, economics, mechanics, etc.


Calculus of Variations and Optimal Control Theory

Calculus of Variations and Optimal Control Theory

Author: Daniel Liberzon

Publisher: Princeton University Press

Published: 2012

Total Pages: 255

ISBN-13: 0691151873

DOWNLOAD EBOOK

This textbook offers a concise yet rigorous introduction to calculus of variations and optimal control theory, and is a self-contained resource for graduate students in engineering, applied mathematics, and related subjects. Designed specifically for a one-semester course, the book begins with calculus of variations, preparing the ground for optimal control. It then gives a complete proof of the maximum principle and covers key topics such as the Hamilton-Jacobi-Bellman theory of dynamic programming and linear-quadratic optimal control. Calculus of Variations and Optimal Control Theory also traces the historical development of the subject and features numerous exercises, notes and references at the end of each chapter, and suggestions for further study. Offers a concise yet rigorous introduction Requires limited background in control theory or advanced mathematics Provides a complete proof of the maximum principle Uses consistent notation in the exposition of classical and modern topics Traces the historical development of the subject Solutions manual (available only to teachers) Leading universities that have adopted this book include: University of Illinois at Urbana-Champaign ECE 553: Optimum Control Systems Georgia Institute of Technology ECE 6553: Optimal Control and Optimization University of Pennsylvania ESE 680: Optimal Control Theory University of Notre Dame EE 60565: Optimal Control


Variational Calculus, Optimal Control and Applications

Variational Calculus, Optimal Control and Applications

Author: Leonhard Bittner

Publisher: Birkhäuser

Published: 2012-12-06

Total Pages: 354

ISBN-13: 3034888023

DOWNLOAD EBOOK

The 12th conference on "Variational Calculus, Optimal Control and Applications" took place September 23-27, 1996, in Trassenheide on the Baltic Sea island of Use dom. Seventy mathematicians from ten countries participated. The preceding eleven conferences, too, were held in places of natural beauty throughout West Pomerania; the first time, in 1972, in Zinnowitz, which is in the immediate area of Trassenheide. The conferences were founded, and led ten times, by Professor Bittner (Greifswald) and Professor KlCitzler (Leipzig), who both celebrated their 65th birthdays in 1996. The 12th conference in Trassenheide, was, therefore, also dedicated to L. Bittner and R. Klotzler. Both scientists made a lasting impression on control theory in the former GDR. Originally, the conferences served to promote the exchange of research results. In the first years, most of the lectures were theoretical, but in the last few conferences practical applications have been given more attention. Besides their pioneering theoretical works, both honorees have also always dealt with applications problems. L. Bittner has, for example, examined optimal control of nuclear reactors and associated safety aspects. Since 1992 he has been working on applications in optimal control in flight dynamics. R. Klotzler recently applied his results on optimal autobahn planning to the south tangent in Leipzig. The contributions published in these proceedings reflect the trend to practical problems; starting points are often questions from flight dynamics.


Optimal Control of Nonsmooth Distributed Parameter Systems

Optimal Control of Nonsmooth Distributed Parameter Systems

Author: Dan Tiba

Publisher: Springer

Published: 2006-11-14

Total Pages: 166

ISBN-13: 3540467556

DOWNLOAD EBOOK

The book is devoted to the study of distributed control problems governed by various nonsmooth state systems. The main questions investigated include: existence of optimal pairs, first order optimality conditions, state-constrained systems, approximation and discretization, bang-bang and regularity properties for optimal control. In order to give the reader a better overview of the domain, several sections deal with topics that do not enter directly into the announced subject: boundary control, delay differential equations. In a subject still actively developing, the methods can be more important than the results and these include: adapted penalization techniques, the singular control systems approach, the variational inequality method, the Ekeland variational principle. Some prerequisites relating to convex analysis, nonlinear operators and partial differential equations are collected in the first chapter or are supplied appropriately in the text. The monograph is intended for graduate students and for researchers interested in this area of mathematics.


Variational Analysis

Variational Analysis

Author: R. Tyrrell Rockafellar

Publisher: Springer Science & Business Media

Published: 2009-06-26

Total Pages: 747

ISBN-13: 3642024319

DOWNLOAD EBOOK

From its origins in the minimization of integral functionals, the notion of variations has evolved greatly in connection with applications in optimization, equilibrium, and control. This book develops a unified framework and provides a detailed exposition of variational geometry and subdifferential calculus in their current forms beyond classical and convex analysis. Also covered are set-convergence, set-valued mappings, epi-convergence, duality, and normal integrands.


Nonlinear Ill-posed Problems of Monotone Type

Nonlinear Ill-posed Problems of Monotone Type

Author: Yakov Alber

Publisher: Springer Science & Business Media

Published: 2006-02-02

Total Pages: 432

ISBN-13: 9781402043956

DOWNLOAD EBOOK

Interest in regularization methods for ill-posed nonlinear operator equations and variational inequalities of monotone type in Hilbert and Banach spaces has grown rapidly over recent years. Results in the field over the last three decades, previously only available in journal articles, are comprehensively explored with particular attention given to applications of regularization methods as well as to practical methods used in computational analysis.


Calculus of Variations and Optimal Control

Calculus of Variations and Optimal Control

Author: N. P. Osmolovskii

Publisher: American Mathematical Soc.

Published: 1998-08-18

Total Pages: 392

ISBN-13: 9780821897874

DOWNLOAD EBOOK

The theory of a Pontryagin minimum is developed for problems in the calculus of variations. The application of the notion of a Pontryagin minimum to the calculus of variations is a distinctive feature of this book. A new theory of quadratic conditions for a Pontryagin minimum, which covers broken extremals, is developed, and corresponding sufficient conditions for a strong minimum are obtained. Some classical theorems of the calculus of variations are generalized.


Nonconvex Optimal Control and Variational Problems

Nonconvex Optimal Control and Variational Problems

Author: Alexander J. Zaslavski

Publisher: Springer Science & Business Media

Published: 2013-06-12

Total Pages: 382

ISBN-13: 1461473780

DOWNLOAD EBOOK

Nonconvex Optimal Control and Variational Problems is an important contribution to the existing literature in the field and is devoted to the presentation of progress made in the last 15 years of research in the area of optimal control and the calculus of variations. This volume contains a number of results concerning well-posedness of optimal control and variational problems, nonoccurrence of the Lavrentiev phenomenon for optimal control and variational problems, and turnpike properties of approximate solutions of variational problems. Chapter 1 contains an introduction as well as examples of select topics. Chapters 2-5 consider the well-posedness condition using fine tools of general topology and porosity. Chapters 6-8 are devoted to the nonoccurrence of the Lavrentiev phenomenon and contain original results. Chapter 9 focuses on infinite-dimensional linear control problems, and Chapter 10 deals with “good” functions and explores new understandings on the questions of optimality and variational problems. Finally, Chapters 11-12 are centered around the turnpike property, a particular area of expertise for the author. This volume is intended for mathematicians, engineers, and scientists interested in the calculus of variations, optimal control, optimization, and applied functional analysis, as well as both undergraduate and graduate students specializing in those areas. The text devoted to Turnpike properties may be of particular interest to the economics community.