Mathematical Reviews
Author:
Publisher:
Published: 2004
Total Pages: 1804
ISBN-13:
DOWNLOAD EBOOKRead and Download eBook Full
Author: Peter Tankov
Publisher: CRC Press
Published: 2003-12-30
Total Pages: 552
ISBN-13: 1135437947
DOWNLOAD EBOOKWINNER of a Riskbook.com Best of 2004 Book Award! During the last decade, financial models based on jump processes have acquired increasing popularity in risk management and option pricing. Much has been published on the subject, but the technical nature of most papers makes them difficult for nonspecialists to understand, and the mathematic
Author: Fereidoon Sioshansi
Publisher: Elsevier
Published: 2011-10-10
Total Pages: 625
ISBN-13: 0080557716
DOWNLOAD EBOOKAfter 2 decades, policymakers and regulators agree that electricity market reform, liberalization and privatization remains partly art. Moreover, the international experience suggests that in nearly all cases, initial market reform leads to unintended consequences or introduces new risks, which must be addressed in subsequent “reform of the reforms. Competitive Electricity Markets describes the evolution of the market reform process including a number of challenging issues such as infrastructure investment, resource adequacy, capacity and demand participation, market power, distributed generation, renewable energy and global climate change. Sequel to Electricity Market Reform: An International Perspective in the same series published in 2006 Contributions from renowned scholars and practitioners on significant electricity market design and implementation issues Covers timely topics on the evolution of electricity market liberalization worldwide
Author: Craig Pirrong
Publisher: Cambridge University Press
Published: 2011-10-31
Total Pages: 239
ISBN-13: 1139501976
DOWNLOAD EBOOKCommodities have become an important component of many investors' portfolios and the focus of much political controversy over the past decade. This book utilizes structural models to provide a better understanding of how commodities' prices behave and what drives them. It exploits differences across commodities and examines a variety of predictions of the models to identify where they work and where they fail. The findings of the analysis are useful to scholars, traders and policy makers who want to better understand often puzzling - and extreme - movements in the prices of commodities from aluminium to oil to soybeans to zinc.
Author: Alexander Eydeland
Publisher: John Wiley & Sons
Published: 2003-02-03
Total Pages: 506
ISBN-13: 0471455873
DOWNLOAD EBOOKPraise for Energy and Power Risk Management "Energy and Power Risk Management identifies and addresses the key issues in the development of the turbulent energy industry and the challenges it poses to market players. An insightful and far-reaching book written by two renowned professionals." -Helyette Geman, Professor of Finance University Paris Dauphine and ESSEC "The most up-to-date and comprehensive book on managing energy price risk in the natural gas and power markets. An absolute imperative for energy traders and energy risk management professionals." -Vincent Kaminski, Managing Director Citadel Investment Group LLC "Eydeland and Wolyniec's work does an excellent job of outlining the methods needed to measure and manage risk in the volatile energy market." -Gerald G. Fleming, Vice President, Head of East Power Trading, TXU Energy Trading "This book combines academic rigor with real-world practicality. It is a must-read for anyone in energy risk management or asset valuation." -Ron Erd, Senior Vice President American Electric Power
Author: Johan Hagenbjörk
Publisher: Linköping University Electronic Press
Published: 2019-12-09
Total Pages: 156
ISBN-13: 917929927X
DOWNLOAD EBOOKThe global fixed income market is an enormous financial market whose value by far exceeds that of the public stock markets. The interbank market consists of interest rate derivatives, whose primary purpose is to manage interest rate risk. The credit market primarily consists of the bond market, which links investors to companies, institutions, and governments with borrowing needs. This dissertation takes an optimization perspective upon modeling both these areas of the fixed-income market. Legislators on the national markets require financial actors to value their financial assets in accordance with market prices. Thus, prices of many assets, which are not publicly traded, must be determined mathematically. The financial quantities needed for pricing are not directly observable but must be measured through solving inverse optimization problems. These measurements are based on the available market prices, which are observed with various degrees of measurement noise. For the interbank market, the relevant financial quantities consist of term structures of interest rates, which are curves displaying the market rates for different maturities. For the bond market, credit risk is an additional factor that can be modeled through default intensity curves and term structures of recovery rates in case of default. By formulating suitable optimization models, the different underlying financial quantities can be measured in accordance with observable market prices, while conditions for economic realism are imposed. Measuring and managing risk is closely connected to the measurement of the underlying financial quantities. Through a data-driven method, we can show that six systematic risk factors can be used to explain almost all variance in the interest rate curves. By modeling the dynamics of these six risk factors, possible outcomes can be simulated in the form of term structure scenarios. For short-term simulation horizons, this results in a representation of the portfolio value distribution that is consistent with the realized outcomes from historically observed term structures. This enables more accurate measurements of interest rate risk, where our proposed method exhibits both lower risk and lower pricing errors compared to traditional models. We propose a method for decomposing changes in portfolio values for an arbitrary portfolio into the risk factors that affect the value of each instrument. By demonstrating the method for the six systematic risk factors identified for the interbank market, we show that almost all changes in portfolio value and portfolio variance can be attributed to these risk factors. Additional risk factors and approximation errors are gathered into two terms, which can be studied to ensure the quality of the performance attribution, and possibly improve it. To eliminate undesired risk within trading books, banks use hedging. Traditional methods do not take transaction costs into account. We, therefore, propose a method for managing the risks in the interbank market through a stochastic optimization model that considers transaction costs. This method is based on a scenario approximation of the optimization problem where the six systematic risk factors are simulated, and the portfolio variance is weighted against the transaction costs. This results in a method that is preferred over the traditional methods for all risk-averse investors. For the credit market, we use data from the bond market in combination with the interbank market to make accurate measurements of the financial quantities. We address the notoriously difficult problem of separating default risk from recovery risk. In addition to the previous identified six systematic risk factors for risk-free interests, we identify four risk factors that explain almost all variance in default intensities, while a single risk factor seems sufficient to model the recovery risk. Overall, this is a higher number of risk factors than is usually found in the literature. Through a simple model, we can measure the variance in bond prices in terms of these systematic risk factors, and through performance attribution, we relate these values to the empirically realized variances from the quoted bond prices. De globala ränte- och kreditmarknaderna är enorma finansiella marknader vars sammanlagda värden vida överstiger de publika aktiemarknadernas. Räntemarknaden består av räntederivat vars främsta användningsområde är hantering av ränterisker. Kreditmarknaden utgörs i första hand av obligationsmarknaden som syftar till att förmedla pengar från investerare till företag, institutioner och stater med upplåningsbehov. Denna avhandling fokuserar på att utifrån ett optimeringsperspektiv modellera både ränte- och obligationsmarknaden. Lagstiftarna på de nationella marknaderna kräver att de finansiella aktörerna värderar sina finansiella tillgångar i enlighet med marknadspriser. Därmed måste priserna på många instrument, som inte handlas publikt, beräknas matematiskt. De finansiella storheter som krävs för denna prissättning är inte direkt observerbara, utan måste mätas genom att lösa inversa optimeringsproblem. Dessa mätningar görs utifrån tillgängliga marknadspriser, som observeras med varierande grad av mätbrus. För räntemarknaden utgörs de relevanta finansiella storheterna av räntekurvor som åskådliggör marknadsräntorna för olika löptider. För obligationsmarknaden utgör kreditrisken en ytterligare faktor som modelleras via fallissemangsintensitetskurvor och kurvor kopplade till förväntat återvunnet kapital vid eventuellt fallissemang. Genom att formulera lämpliga optimeringsmodeller kan de olika underliggande finansiella storheterna mätas i enlighet med observerbara marknadspriser samtidigt som ekonomisk realism eftersträvas. Mätning och hantering av risker är nära kopplat till mätningen av de underliggande finansiella storheterna. Genom en datadriven metod kan vi visa att sex systematiska riskfaktorer kan användas för att förklara nästan all varians i räntekurvorna. Genom att modellera dynamiken i dessa sex riskfaktorer kan tänkbara utfall för räntekurvor simuleras. För kortsiktiga simuleringshorisonter resulterar detta i en representation av fördelningen av portföljvärden som väl överensstämmer med de realiserade utfallen från historiskt observerade räntekurvor. Detta möjliggör noggrannare mätningar av ränterisk där vår föreslagna metod uppvisar såväl lägre risk som mindre prissättningsfel jämfört med traditionella modeller. Vi föreslår en metod för att dekomponera portföljutvecklingen för en godtycklig portfölj till de riskfaktorer som påverkar värdet för respektive instrument. Genom att demonstrera metoden för de sex systematiska riskfaktorerna som identifierats för räntemarknaden visar vi att nästan all portföljutveckling och portföljvarians kan härledas till dessa riskfaktorer. Övriga riskfaktorer och approximationsfel samlas i två termer, vilka kan användas för att säkerställa och eventuellt förbättra kvaliteten i prestationshärledningen. För att eliminera oönskad risk i sina tradingböcker använder banker sig av hedging. Traditionella metoder tar ingen hänsyn till transaktionskostnader. Vi föreslår därför en metod för att hantera riskerna på räntemarknaden genom en stokastisk optimeringsmodell som också tar hänsyn till transaktionskostnader. Denna metod bygger på en scenarioapproximation av optimeringsproblemet där de sex systematiska riskfaktorerna simuleras och portföljvariansen vägs mot transaktionskostnaderna. Detta resulterar i en metod som, för alla riskaverta investerare, är att föredra framför de traditionella metoderna. På kreditmarknaden använder vi data från obligationsmarknaden i kombination räntemarknaden för att göra noggranna mätningar av de finansiella storheterna. Vi angriper det erkänt svåra problemet att separera fallissemangsrisk från återvinningsrisk. Förutom de tidigare sex systematiska riskfaktorerna för riskfri ränta, identifierar vi fyra riskfaktorer som förklarar nästan all varians i fallissemangsintensiteter, medan en enda riskfaktor tycks räcka för att modellera återvinningsrisken. Sammanlagt är detta ett större antal riskfaktorer än vad som brukar användas i litteraturen. Via en enkel modell kan vi mäta variansen i obligationspriser i termer av dessa systematiska riskfaktorer och genom prestationshärledningen relatera dessa värden till de empiriskt realiserade varianserna från kvoterade obligationspriser.
Author: Ales Cerný
Publisher: Princeton University Press
Published: 2009-07-06
Total Pages: 414
ISBN-13: 1400831482
DOWNLOAD EBOOKOriginally published in 2003, Mathematical Techniques in Finance has become a standard textbook for master's-level finance courses containing a significant quantitative element while also being suitable for finance PhD students. This fully revised second edition continues to offer a carefully crafted blend of numerical applications and theoretical grounding in economics, finance, and mathematics, and provides plenty of opportunities for students to practice applied mathematics and cutting-edge finance. Ales Cerný mixes tools from calculus, linear algebra, probability theory, numerical mathematics, and programming to analyze in an accessible way some of the most intriguing problems in financial economics. The textbook is the perfect hands-on introduction to asset pricing, optimal portfolio selection, risk measurement, and investment evaluation. The new edition includes the most recent research in the area of incomplete markets and unhedgeable risks, adds a chapter on finite difference methods, and thoroughly updates all bibliographic references. Eighty figures, over seventy examples, twenty-five simple ready-to-run computer programs, and several spreadsheets enhance the learning experience. All computer codes have been rewritten using MATLAB and online supplementary materials have been completely updated. A standard textbook for graduate finance courses Introduction to asset pricing, portfolio selection, risk measurement, and investment evaluation Detailed examples and MATLAB codes integrated throughout the text Exercises and summaries of main points conclude each chapter
Author: Wim Schoutens
Publisher: Wiley
Published: 2003-05-07
Total Pages: 200
ISBN-13: 9780470851562
DOWNLOAD EBOOKFinancial mathematics has recently enjoyed considerable interest on account of its impact on the finance industry. In parallel, the theory of L?vy processes has also seen many exciting developments. These powerful modelling tools allow the user to model more complex phenomena, and are commonly applied to problems in finance. L?vy Processes in Finance: Pricing Financial Derivatives takes a practical approach to describing the theory of L?vy-based models, and features many examples of how they may be used to solve problems in finance. * Provides an introduction to the use of L?vy processes in finance. * Features many examples using real market data, with emphasis on the pricing of financial derivatives. * Covers a number of key topics, including option pricing, Monte Carlo simulations, stochastic volatility, exotic options and interest rate modelling. * Includes many figures to illustrate the theory and examples discussed. * Avoids unnecessary mathematical formalities. The book is primarily aimed at researchers and postgraduate students of mathematical finance, economics and finance. The range of examples ensures the book will make a valuable reference source for practitioners from the finance industry including risk managers and financial product developers.
Author: Yacine Aït-Sahalia
Publisher: Princeton University Press
Published: 2014-07-21
Total Pages: 683
ISBN-13: 0691161437
DOWNLOAD EBOOKA comprehensive introduction to the statistical and econometric methods for analyzing high-frequency financial data High-frequency trading is an algorithm-based computerized trading practice that allows firms to trade stocks in milliseconds. Over the last fifteen years, the use of statistical and econometric methods for analyzing high-frequency financial data has grown exponentially. This growth has been driven by the increasing availability of such data, the technological advancements that make high-frequency trading strategies possible, and the need of practitioners to analyze these data. This comprehensive book introduces readers to these emerging methods and tools of analysis. Yacine Aït-Sahalia and Jean Jacod cover the mathematical foundations of stochastic processes, describe the primary characteristics of high-frequency financial data, and present the asymptotic concepts that their analysis relies on. Aït-Sahalia and Jacod also deal with estimation of the volatility portion of the model, including methods that are robust to market microstructure noise, and address estimation and testing questions involving the jump part of the model. As they demonstrate, the practical importance and relevance of jumps in financial data are universally recognized, but only recently have econometric methods become available to rigorously analyze jump processes. Aït-Sahalia and Jacod approach high-frequency econometrics with a distinct focus on the financial side of matters while maintaining technical rigor, which makes this book invaluable to researchers and practitioners alike.
Author: Richard Durrett
Publisher: Springer
Published: 2016-11-07
Total Pages: 282
ISBN-13: 3319456148
DOWNLOAD EBOOKBuilding upon the previous editions, this textbook is a first course in stochastic processes taken by undergraduate and graduate students (MS and PhD students from math, statistics, economics, computer science, engineering, and finance departments) who have had a course in probability theory. It covers Markov chains in discrete and continuous time, Poisson processes, renewal processes, martingales, and option pricing. One can only learn a subject by seeing it in action, so there are a large number of examples and more than 300 carefully chosen exercises to deepen the reader’s understanding. Drawing from teaching experience and student feedback, there are many new examples and problems with solutions that use TI-83 to eliminate the tedious details of solving linear equations by hand, and the collection of exercises is much improved, with many more biological examples. Originally included in previous editions, material too advanced for this first course in stochastic processes has been eliminated while treatment of other topics useful for applications has been expanded. In addition, the ordering of topics has been improved; for example, the difficult subject of martingales is delayed until its usefulness can be applied in the treatment of mathematical finance.