The shortage of marine resources calls for the implementation of new technological processes for providing a better utilization of waste and by-products from fisheries and fish processing activities. Most of these by-products are currently used as raw materials for animal feed. It is estimated that their utilization in human foodstuffs, nutraceutic
A significant amount of fish by-products is produced during fish processing. These by-products represent 20–80 percent of the fish and provide a good source of macro- and micronutrients. Yet they often go unutilized, when they can easily be converted into a variety of products including fishmeal and oil, fish hydrolysates, fish collagen, fish sauce, fish biodiesel and fish leather. The production of fish silage using organic acid is a good example of the simple and inexpensive conversion processes which can be employed. Fish silage production uses minced by-products or minced whole fish unsuitable for human consumption as raw material, before adding a preservative to stabilize the mixture – usually an organic acid such as formic acid. The process breaks down protein into free amino acids and small-chain peptides which have nutritional and antimicrobial properties, therefore, the fish silage can be used as healthy feed and fertilizer.The feasibility studies on fish waste management in Bangladesh, Philippines and Thailand outline existing good practices on the utilization of by-products and fish waste. Furthermore, the insights provided on the potential production and utilization of fish silage in each country are promising in terms of increasing the productivity of the fisheries sector, reducing post-harvest waste, increasing economic value and improving environment sustainability.
This guide explains how to transform fish waste into feed for livestock or fertilizer for crops by using fish silage technology. It discusses the fundamentals of fish silage production as well as equipment needed, storage and useful applications
Part of the new IFST Advances in Food Science Series, Seafood Processing: Technology, Quality and Safety covers the whole range of current processes which are applied to seafood, as well as quality and safety aspects. The first part of the book (‘Processing Technologies’) covers primary processing, heating, chilling, freezing, irradiation, traditional preservation methods (salting, drying, smoking, fermentation, etc), frozen surimi and packaging. The subjects of waste management and sustainability issues of fish processing are also covered. In the second part (‘Quality and Safety Issues’), quality and safety analysis, fish and seafood authenticity and risk assessment are included.
The seafood processing industry produces a large amount of by-products that usually consist of bioactive materials such as proteins, enzymes, fatty acids, and biopolymers. These by-products are often underutilized or wasted, even though they have been shown to have biotechnological, nutritional, pharmaceutical, and biomedical applications. For example, by-products derived from crustaceans and algae have been successfully applied in place of collagen and gelatin in food, cosmetics, drug delivery, and tissue engineering. Divided into four parts and consisting of twenty-seven chapters, this book discusses seafood by-product development, isolation, and characterization, and demonstrates the importance of seafood by-products for the pharmaceutical, nutraceutical, and biomedical industries.
Ranging from biofuels to building materials, and from cosmetics to pharmaceuticals, the list of products that may be manufactured using discards from farming and fishery operations is extensive. Byproducts from Agriculture and Fisheries examines the procedures and technologies involved in this process of reconstitution, taking an environmentally aware approach as it explores the developing role of value-added byproducts in the spheres of food security, waste management, and climate control. An international group of authors contributes engaging and insightful chapters on a wide selection of animal and plant byproducts, discussing the practical business of byproduct recovery within the vital contexts of shifting socio-economic concerns and the emergence of green chemistry. This important text: Covers recent developments, current research, and emerging technologies in the fields of byproduct recovery and utilization Explores potential opportunities for future research and the prospective socioeconomic benefits of green waste management Includes detailed descriptions of procedures for the transformation of the wastes into of value-added food and non-food products With its combination of practical instruction and broader commentary, Byproducts from Agriculture and Fisheries offers essential insight and expertise to all students and professionals working in agriculture, environmental science, food science, and any other field concerned with sustainable resources.
Biotechnology has immense potential for resolving environmental problems and augmenting food production. Particularly, it offers solutions for converting solid wastes into value-added items. In food processing industries that generate voluminous by-products and wastes, valorization can help offset growing environmental problems and facilitate the sustainable use of available natural resources. Valorization of Food Processing By-Products describes the potential of this relatively new concept in the field of industrial residues management. The debut book in CRC Press’s new Fermented Foods and Beverages Series, this volume explores the current state of the art in food processing by-products with respect to their generation, methods of disposal, and problems faced in terms of waste and regulation. It reviews the basic fundamental principles of waste recycling, including process engineering economics and the microbiology and biochemical and nutritional aspects of food processing. It discusses fermentation techniques available for valorization of food processing by-products, enzyme technologies, and analytical techniques and instrumentation. Individual chapters examine the by-products of plant-based and animal-based food industries. The book also delves into socioeconomic considerations and environmental concerns related to food processing by-products. It surveys research gaps and areas ripe for further inquiry as well as future trends in the field. An essential reference for researchers and practitioners in the food science and food technology industry, this volume is also poised to inspire those who wish to take on valorization of food by-products as a professional endeavor. A contribution toward sustainability, valorization makes maximum use of agricultural produce while employing low-energy and cost-effective processes.
The fish processing industry is still far from the levels of scientific and technological development that characterize other food processing oper ations. It has also been slow in finding uses for by-products and processing wastes, compared with the meat and poultry industries. The utilization of fisheries by-products or wastes constitutes an area in which the application of modern techniques could potentially improve profitability. At present, increased attention is being focused on the application of new biotechnological methods to operations related to the seafood industry, with the objective of increasing its general efficiency. Because fish processing operations are commonly carried out in the vicinity of the sea, most of the resulting fish wastes have been disposed of by returning them to it. Pollution control measures and a better understanding of the valuable composition of the products extracted from the sea are expected to encourage their recovery and the develop ment of new products from them. In the past, fisheries wastes and species not used for food have been generally utilized through techno logical processes with a low level of sophistication, such as those for the production of animal feed and fertilizer. Limited economic success has accompanied the application of physi cal and chemical processes for the recovery of non-utilized fisheries biomass and for the production of quality products from them.
This is the third volume of the ISEKI-Food book series. It deals with the main features of utilization of the food industry waste, defined thereby as by-product, and the treatments necessary to discard waste to environmental acceptors. It discusses the utilization of byproducts of plants and fish, and presents case studies on waste treatment in the food industry.
"Food Processing Waste Management: Treatment and Utilization Technologies" is a reference-cum-text book written in crisp and scientifically authentic language for teachers, scientists, researchers, students, industry managers, as well as all those who have a stake in food processing wastes management and utilization. It presents the latest information on the problems of wastes generated from various food industries. The contents have been divided into 14 s namely; Food Processing Industrial Wastes- Present Scenario, Impact of Food Industrial Waste on Environment, Grain Processing Wastes Management, Waste Utilization - Fruit and Vegetable Processing Industry, Milk and Dairy Wastes Management, Meat Processing Wastes Management, Fish Processing Wastes Management, Spices and Condiments Industrial Wastes Management, Sugar and Jaggery Industrial Wastes Management, Fruit Kernel and Oilseed Processing Wastes Management, Utilization of Waste from Food Fermentation Industry, Food Processing Waste Treatment Technology, Hospitality Industry Wastes Management and Future Wastes Management - Nanotechnology. All the segments of Food Industry have been dealt with separately by specialists with respect to their wastes management technology. Special emphasis has been laid on the potential methods of utilization of the wastes for recovery of useful products and a supplementary means of checking pollution by their profitable utilization and disposal. The profitable utilization of the food industrial wastes would not only fetch extra profits to the industry but would also reduce the pollution load in the environment. The special feature of the book is that it covers different developments made right from the basic technologies generated for wastes management to the recent advancements and future areas of research to be done on the subject. Under undergraduate and post-graduate degree or diploma programmes of food science, food technology and postharvest Technology, fermentation technology, waste management as a subject is taught in almost all the agricultural universities in India as well as abroad .The book is expected to be very useful to the students of these disciplines. It is hoped that the treatise would be of immense value to all and would certainly open an insight into food waste management technology in the fast growing food processing industry.