Topology Optimization in Engineering Structure Design

Topology Optimization in Engineering Structure Design

Author: Jihong Zhu

Publisher: Elsevier

Published: 2016-11-08

Total Pages: 296

ISBN-13: 0081021194

DOWNLOAD EBOOK

Topology Optimization in Engineering Structure Design explores the recent advances and applications of topology optimization in engineering structures design, with a particular focus on aircraft and aerospace structural systems.To meet the increasingly complex engineering challenges provided by rapid developments in these industries, structural optimization techniques have developed in conjunction with them over the past two decades. The latest methods and theories to improve mechanical performances and save structural weight under static, dynamic and thermal loads are summarized and explained in detail here, in addition to potential applications of topology optimization techniques such as shape preserving design, smart structure design and additive manufacturing.These new design strategies are illustrated by a host of worked examples, which are inspired by real engineering situations, some of which have been applied to practical structure design with significant effects. Written from a forward-looking applied engineering perspective, the authors not only summarize the latest developments in this field of structure design but also provide both theoretical knowledge and a practical guideline. This book should appeal to graduate students, researchers and engineers, in detailing how to use topology optimization methods to improve product design. - Combines practical applications and topology optimization methodologies - Provides problems inspired by real engineering difficulties - Designed to help researchers in universities acquire more engineering requirements


Rapid Manufacturing

Rapid Manufacturing

Author: Neil Hopkinson

Publisher: John Wiley & Sons

Published: 2006-02-22

Total Pages: 304

ISBN-13: 9780470032862

DOWNLOAD EBOOK

Rapid Manufacturing is a new area of manufacturing developed from a family of technologies known as Rapid Prototyping. These processes have already had the effect of both improving products and reducing their development time; this in turn resulted in the development of the technology of Rapid Tooling, which implemented Rapid Prototyping techniques to improve its own processes. Rapid Manufacturing has developed as the next stage, in which the need for tooling is eliminated. It has been shown that it is economically feasible to use existing commercial Rapid Prototyping systems to manufacture series parts in quantities of up to 20,000 and customised parts in quantities of hundreds of thousands. This form of manufacturing can be incredibly cost-effective and the process is far more flexible than conventional manufacturing. Rapid Manufacturing: An Industrial Revolution for the Digital Age addresses the academic fundamentals of Rapid Manufacturing as well as focussing on case studies and applications across a wide range of industry sectors. As a technology that allows manufacturers to create products without tools, it enables previously impossible geometries to be made. This book is abundant with images depicting the fantastic array of products that are now being commercially manufactured using these technologies. Includes contributions from leading researchers working at the forefront of industry. Features detailed illustrations throughout. Rapid Manufacturing: An Industrial Revolution for the Digital Age is a groundbreaking text that provides excellent coverage of this fast emerging industry. It will interest manufacturing industry practitioners in research and development, product design and materials science, as well as having a theoretical appeal to researchers and post-graduate students in manufacturing engineering, product design, CAD/CAM and CIFM.


Towards Design Automation for Additive Manufacturing

Towards Design Automation for Additive Manufacturing

Author: Anton Wiberg

Publisher: Linköping University Electronic Press

Published: 2019-10-14

Total Pages: 69

ISBN-13: 9179299857

DOWNLOAD EBOOK

In recent decades, the development of computer-controlled manufacturing by adding materiallayer by layer, called Additive Manufacturing (AM), has developed at a rapid pace. The technologyadds possibilities to the manufacturing of geometries that are not possible, or at leastnot economically feasible, to manufacture by more conventional manufacturing methods. AMcomes with the idea that complexity is free, meaning that complex geometries are as expensiveto manufacture as simple geometries. This is partly true, but there remain several design rulesthat needs to be considered before manufacturing. The research field Design for Additive Manufacturing(DfAM) consists of research that aims to take advantage of the possibilities of AMwhile considering the limitations of the technique. Computer Aided technologies (CAx) is the name of the usage of methods and software thataim to support a digital product development process. CAx includes software and methodsfor design, the evaluation of designs, manufacturing support, and other things. The commongoal with all CAx disciplines is to achieve better products at a lower cost and with a shorterdevelopment time. The work presented in this thesis bridges DfAM with CAx with the aim of achieving designautomation for AM. The work reviews the current DfAM process and proposes a new integratedDfAM process that considers the functionality and manufacturing of components. Selectedparts of the proposed process are implemented in a case study in order to evaluate theproposed process. In addition, a tool that supports part of the design process is developed. The proposed design process implements Multidisciplinary Design Optimization (MDO) witha parametric CAD model that is evaluated from functional and manufacturing perspectives. Inthe implementation, a structural component is designed using the MDO framework, which includesComputer Aided Engineering (CAE) models for structural evaluation, the calculation ofweight, and how much support material that needs to be added during manufacturing. Thecomponent is optimized for the reduction of weight and minimization of support material,while the stress levels in the component are constrained. The developed tool uses methodsfor high level Parametric CAD modelling to simplify the creation of parametric CAD modelsbased on Topology Optimization (TO) results. The work concludes that the implementation of CAx technologies in the DfAM process enablesa more automated design process with less manual design iterations than traditional DfAM processes.It also discusses and presents directions for further research to achieve a fully automateddesign process for Additive Manufacturing.


Multiscale Structural Topology Optimization

Multiscale Structural Topology Optimization

Author: Liang Xia

Publisher: Elsevier

Published: 2016-04-27

Total Pages: 186

ISBN-13: 0081011865

DOWNLOAD EBOOK

Multiscale Structural Topology Optimization discusses the development of a multiscale design framework for topology optimization of multiscale nonlinear structures. With the intention to alleviate the heavy computational burden of the design framework, the authors present a POD-based adaptive surrogate model for the RVE solutions at the microscopic scale and make a step further towards the design of multiscale elastoviscoplastic structures. Various optimization methods for structural size, shape, and topology designs have been developed and widely employed in engineering applications. Topology optimization has been recognized as one of the most effective tools for least weight and performance design, especially in aeronautics and aerospace engineering. This book focuses on the simultaneous design of both macroscopic structure and microscopic materials. In this model, the material microstructures are optimized in response to the macroscopic solution, which results in the nonlinearity of the equilibrium problem of the interface of the two scales. The authors include a reduce database model from a set of numerical experiments in the space of effective strain. - Presents the first attempts towards topology optimization design of nonlinear highly heterogeneous structures - Helps with simultaneous design of the topologies of both macroscopic structure and microscopic materials - Helps with development of computer codes for the designs of nonlinear structures and of materials with extreme constitutive properties - Focuses on the simultaneous design of both macroscopic structure and microscopic materials - Includes a reduce database model from a set of numerical experiments in the space of effective strain


Introduction to Optimum Design

Introduction to Optimum Design

Author: Jasbir Singh Arora

Publisher: Academic Press

Published: 2011-08-12

Total Pages: 897

ISBN-13: 012381376X

DOWNLOAD EBOOK

Introduction to Optimum Design, Third Edition describes an organized approach to engineering design optimization in a rigorous yet simplified manner. It illustrates various concepts and procedures with simple examples and demonstrates their applicability to engineering design problems. Formulation of a design problem as an optimization problem is emphasized and illustrated throughout the text. Excel and MATLAB® are featured as learning and teaching aids. - Basic concepts of optimality conditions and numerical methods are described with simple and practical examples, making the material highly teachable and learnable - Includes applications of optimization methods for structural, mechanical, aerospace, and industrial engineering problems - Introduction to MATLAB Optimization Toolbox - Practical design examples introduce students to the use of optimization methods early in the book - New example problems throughout the text are enhanced with detailed illustrations - Optimum design with Excel Solver has been expanded into a full chapter - New chapter on several advanced optimum design topics serves the needs of instructors who teach more advanced courses


Design for Additive Manufacturing

Design for Additive Manufacturing

Author: Martin Leary

Publisher: Elsevier

Published: 2019-12-03

Total Pages: 360

ISBN-13: 0128168870

DOWNLOAD EBOOK

Design for Additive Manufacturing is a complete guide to design tools for the manufacturing requirements of AM and how they can enable the optimization of process and product parameters for the reduction of manufacturing costs and effort. This timely synopsis of state-of-the-art design tools for AM brings the reader right up-to-date on the latest methods from both academia and industry. Tools for both metallic and polymeric AM technologies are presented and critically reviewed, along with their manufacturing attributes. Commercial applications of AM are also explained with case studies from a range of industries, thus demonstrating best-practice in AM design. - Covers all the commonly used tools for designing for additive manufacturing, as well as descriptions of important emerging technologies - Provides systematic methods for optimizing AM process selection for specific production requirement - Addresses design tools for both metallic and polymeric AM technologies - Includes commercially relevant case studies that showcase best-practice in AM design, including the biomedical, aerospace, defense and automotive sectors


Additive Manufacturing of Metals: The Technology, Materials, Design and Production

Additive Manufacturing of Metals: The Technology, Materials, Design and Production

Author: Li Yang

Publisher: Springer

Published: 2017-05-11

Total Pages: 172

ISBN-13: 3319551280

DOWNLOAD EBOOK

This book offers a unique guide to the three-dimensional (3D) printing of metals. It covers various aspects of additive, subtractive, and joining processes used to form three-dimensional parts with applications ranging from prototyping to production. Examining a variety of manufacturing technologies and their ability to produce both prototypes and functional production-quality parts, the individual chapters address metal components and discuss some of the important research challenges associated with the use of these technologies. As well as exploring the latest technologies currently under development, the book features unique sections on electron beam melting technology, material lifting, and the importance this science has in the engineering context. Presenting unique real-life case studies from industry, this book is also the first to offer the perspective of engineers who work in the field of aerospace and transportation systems, and who design components and manufacturing networks. Written by the leading experts in this field at universities and in industry, it provides a comprehensive textbook for students and an invaluable guide for practitioners


Topology Optimization

Topology Optimization

Author: Martin Philip Bendsoe

Publisher: Springer Science & Business Media

Published: 2013-04-17

Total Pages: 381

ISBN-13: 3662050862

DOWNLOAD EBOOK

The topology optimization method solves the basic enginee- ring problem of distributing a limited amount of material in a design space. The first edition of this book has become the standard text on optimal design which is concerned with the optimization of structural topology, shape and material. This edition, has been substantially revised and updated to reflect progress made in modelling and computational procedures. It also encompasses a comprehensive and unified description of the state-of-the-art of the so-called material distribution method, based on the use of mathematical programming and finite elements. Applications treated include not only structures but also materials and MEMS.


Revolutionizing Aircraft Materials and Processes

Revolutionizing Aircraft Materials and Processes

Author: Spiros Pantelakis

Publisher: Springer Nature

Published: 2020-03-11

Total Pages: 405

ISBN-13: 303035346X

DOWNLOAD EBOOK

This book addresses the emerging needs of the aerospace industry by discussing recent developments and future trends of aeronautic materials. It is aimed at advancing existing materials and fostering the ability to develop novel materials with less weight, increased mechanical properties, more functionality, diverse manufacturing methods, and recyclability. The development of novel materials and multifunctional materials has helped to increase efficiency and safety, reduce costs, and decrease the environmental foot print of the aeronautical industry. In this book, integral metallic structures designed by disruptive concepts, including topology optimization and additive manufacturing, are highlighted.


Metal Additive Manufacturing

Metal Additive Manufacturing

Author: Dyuti Sarker

Publisher: John Wiley & Sons

Published: 2021-10-26

Total Pages: 624

ISBN-13: 1119210836

DOWNLOAD EBOOK

METAL ADDITIVE MANUFACTURING A comprehensive review of additive manufacturing processes for metallic structures Additive Manufacturing (AM)—also commonly referred to as 3D printing—builds three-dimensional objects by adding materials layer by layer. Recent years have seen unprecedented investment in additive manufacturing research and development by governments and corporations worldwide. This technology has the potential to replace many conventional manufacturing processes, enable the development of new industry practices, and transform the entire manufacturing enterprise. Metal Additive Manufacturing provides an up-to-date review of all essential physics of metal additive manufacturing techniques with emphasis on both laser-based and non-laser-based additive manufacturing processes. This comprehensive volume covers fundamental processes and equipment, governing physics and modelling, design and topology optimization, and more. The text adresses introductory, intermediate, and advanced topics ranging from basic additive manufacturing process classification to practical and material design aspects of additive manufacturability. Written by a panel of expert authors in the field, this authoritative resource: Provides a thorough analysis of AM processes and their theoretical foundations Explains the classification, advantages, and applications of AM processes Describes the equipment required for different AM processes for metallic structures, including laser technologies, positioning devices, feeder and spreader mechanisms, and CAD software Discusses the opportunities, challenges, and current and emerging trends within the field Covers practical considerations, including design for AM, safety, quality assurance, automation, and real-time control of AM processes Includes illustrative cases studies and numerous figures and tables Featuring material drawn from the lead author’s research and professional experience on laser additive manufacturing, Metal Additive Manufacturing is an important source for manufacturing professionals, research and development engineers in the additive industry, and students and researchers involved in mechanical, mechatronics, automatic control, and materials engineering and science.