This book covers the various advanced reciprocating combustion engine technologies that utilize natural gas and alternative fuels for transportation and power generation applications. It is divided into three major sections consisting of both fundamental and applied technologies to identify (but not limited to) clean, high-efficiency opportunities with natural gas fueling that have been developed through experimental protocols, numerical and high-performance computational simulations, and zero-dimensional, multizone combustion simulations. Particular emphasis is placed on statutes to monitor fine particulate emissions from tailpipe of engines operating on natural gas and alternative fuels.
Advanced Power Generation Systems examines the full range of advanced multiple output thermodynamic cycles that can enable more sustainable and efficient power production from traditional methods, as well as driving the significant gains available from renewable sources. These advanced cycles can harness the by-products of one power generation effort, such as electricity production, to simultaneously create additional energy outputs, such as heat or refrigeration. Gas turbine-based, and industrial waste heat recovery-based combined, cogeneration, and trigeneration cycles are considered in depth, along with Syngas combustion engines, hybrid SOFC/gas turbine engines, and other thermodynamically efficient and environmentally conscious generation technologies. The uses of solar power, biomass, hydrogen, and fuel cells in advanced power generation are considered, within both hybrid and dedicated systems. The detailed energy and exergy analysis of each type of system provided by globally recognized author Dr. Ibrahim Dincer will inform effective and efficient design choices, while emphasizing the pivotal role of new methodologies and models for performance assessment of existing systems. This unique resource gathers information from thermodynamics, fluid mechanics, heat transfer, and energy system design to provide a single-source guide to solving practical power engineering problems. - The only complete source of info on the whole array of multiple output thermodynamic cycles, covering all the design options for environmentally-conscious combined production of electric power, heat, and refrigeration - Offers crucial instruction on realizing more efficiency in traditional power generation systems, and on implementing renewable technologies, including solar, hydrogen, fuel cells, and biomass - Each cycle description clarified through schematic diagrams, and linked to sustainable development scenarios through detailed energy, exergy, and efficiency analyses - Case studies and examples demonstrate how novel systems and performance assessment methods function in practice
Environmental Inorganic Chemistry for Engineers explains the principles of inorganic contaminant behavior, also applying these principles to explore available remediation technologies, and providing the design, operation, and advantages or disadvantages of the various remediation technologies. Written for environmental engineers and researchers, this reference provides the tools and methods that are imperative to protect and improve the environment. The book's three-part treatment starts with a clear and rigorous exposition of metals, including topics such as preparations, structures and bonding, reactions and properties, and complex formation and sequestering. This coverage is followed by a self-contained section concerning complex formation, sequestering, and organometallics, including hydrides and carbonyls. Part Two, Non-Metals, provides an overview of chemical periodicity and the fundamentals of their structure and properties. - Clearly explains the principles of inorganic contaminant behavior in order to explore available remediation technologies - Provides the design, operation, and advantages or disadvantages of the various remediation technologies - Presents a clear exposition of metals, including topics such as preparations, structures, and bonding, reaction and properties, and complex formation and sequestering
Conventional fossil fuels will constitute the majority of automotive fuels for the foreseeable future but will have to adapt to changes in engine technology. Unconventional transport fuels such as biofuels, gas-to-liquid fuels, compressed natural gas, and liquid petroleum gas will also play a role. Hydrogen might be a viable transport fuel if it overcomes barriers in production, transport, storage, and safety and/or if fuel cells become viable. This book opens by considering these issues and then introduces practical transport fuels. A chapter on engine deposits follows, which is an important practical topic about how fuels affect engines that is not usually considered in other books. The next three chapters discuss auto-ignition phenomena in engines. The auto-ignition resistance of fuels is the most important fuel property since it limits the efficiency of spark ignition engines and determines the performance of compression ignition engines. Moreover, the manufacture of fuels is primarily driven by the need to meet auto-ignition quality demands set by fuel specifications. The final chapter considers the implications for future fuels. The book covers the many important ways that fuels and engines interact and why and how fuels will need to change to meet the requirements of future engines, as well as the implications for fuels manufacture and specifications.
Asian Atmospheric Pollution: Sources, Characteristics and Impacts provides a concise yet comprehensive treatment of all aspects of pollution and air quality monitoring, across all of Asia. It focuses on key regions of the world and details a variety of sources, their transport mechanism, long term variability and impacts on climate at local and regional scales. It also discusses the feedback on pollutants, on different meteorological parameters like radiative forcing, fog formations, precipitation, cloud characteristics and more. Drawing upon the expertise of multiple well-known authors from different countries to underline some of these key issues, it includes sections dedicated to treatment of pollutant sources, studying of pollutants and trace gases using satellite/station based observations and models, transport mechanisms, seasonal and inter-annual variability and impact on climate, health and biosphere in general. Asian Atmospheric Pollution: Sources, Characteristics and Impacts is a useful resource for scientists and students to understand the sources and dynamics of atmospheric pollution as well as their transport from one continent to other continents, helping the atmospheric modelling community to model different scenarios of the pollution, gauge its short term and long term impacts across regional to global scales and better understand the ramifications of episodic events. - Covers all of Asia in detail in terms of pollution - Focuses not only on local pollution, but on long-term transport of these pollutants and their impacts on other regions as well as the globe - Includes discussion of both particulate matter and greenhouse gases - Serves as a single resource on Asian air pollution and Impacts from the most current research across the globe including the US, Asia, Africa and Europe
This book presents the papers from the Internal Combustion Engines: Performance, fuel economy and emissions held in London, UK. This popular international conference from the Institution of Mechanical Engineers provides a forum for IC engine experts looking closely at developments for personal transport applications, though many of the drivers of change apply to light and heavy duty, on and off highway, transport and other sectors. These are exciting times to be working in the IC engine field. With the move towards downsizing, advances in FIE and alternative fuels, new engine architectures and the introduction of Euro 6 in 2014, there are plenty of challenges. The aim remains to reduce both CO2 emissions and the dependence on oil-derivate fossil fuels whilst meeting the future, more stringent constraints on gaseous and particulate material emissions as set by EU, North American and Japanese regulations. How will technology developments enhance performance and shape the next generation of designs? The book introduces compression and internal combustion engines' applications, followed by chapters on the challenges faced by alternative fuels and fuel delivery. The remaining chapters explore current improvements in combustion, pollution prevention strategies and data comparisons. - Presents the latest requirements and challenges for personal transport applications - Gives an insight into the technical advances and research going on in the IC Engines field - Provides the latest developments in compression and spark ignition engines for light and heavy-duty applications, automotive and other markets
Technologies and Approaches to Reducing the Fuel Consumption of Medium- and Heavy-Duty Vehicles evaluates various technologies and methods that could improve the fuel economy of medium- and heavy-duty vehicles, such as tractor-trailers, transit buses, and work trucks. The book also recommends approaches that federal agencies could use to regulate these vehicles' fuel consumption. Currently there are no fuel consumption standards for such vehicles, which account for about 26 percent of the transportation fuel used in the U.S. The miles-per-gallon measure used to regulate the fuel economy of passenger cars. is not appropriate for medium- and heavy-duty vehicles, which are designed above all to carry loads efficiently. Instead, any regulation of medium- and heavy-duty vehicles should use a metric that reflects the efficiency with which a vehicle moves goods or passengers, such as gallons per ton-mile, a unit that reflects the amount of fuel a vehicle would use to carry a ton of goods one mile. This is called load-specific fuel consumption (LSFC). The book estimates the improvements that various technologies could achieve over the next decade in seven vehicle types. For example, using advanced diesel engines in tractor-trailers could lower their fuel consumption by up to 20 percent by 2020, and improved aerodynamics could yield an 11 percent reduction. Hybrid powertrains could lower the fuel consumption of vehicles that stop frequently, such as garbage trucks and transit buses, by as much 35 percent in the same time frame.
Various combinations of commercially available technologies could greatly reduce fuel consumption in passenger cars, sport-utility vehicles, minivans, and other light-duty vehicles without compromising vehicle performance or safety. Assessment of Technologies for Improving Light Duty Vehicle Fuel Economy estimates the potential fuel savings and costs to consumers of available technology combinations for three types of engines: spark-ignition gasoline, compression-ignition diesel, and hybrid. According to its estimates, adopting the full combination of improved technologies in medium and large cars and pickup trucks with spark-ignition engines could reduce fuel consumption by 29 percent at an additional cost of $2,200 to the consumer. Replacing spark-ignition engines with diesel engines and components would yield fuel savings of about 37 percent at an added cost of approximately $5,900 per vehicle, and replacing spark-ignition engines with hybrid engines and components would reduce fuel consumption by 43 percent at an increase of $6,000 per vehicle. The book focuses on fuel consumption-the amount of fuel consumed in a given driving distance-because energy savings are directly related to the amount of fuel used. In contrast, fuel economy measures how far a vehicle will travel with a gallon of fuel. Because fuel consumption data indicate money saved on fuel purchases and reductions in carbon dioxide emissions, the book finds that vehicle stickers should provide consumers with fuel consumption data in addition to fuel economy information.
Dual-Fuel Diesel Engines offers a detailed discussion of different types of dual-fuel diesel engines, the gaseous fuels they can use, and their operational practices. Reflecting cutting-edge advancements in this rapidly expanding field, this timely book:Explains the benefits and challenges associated with internal combustion, compression ignition,
A continuous rise in the consumption of gasoline, diesel, and other petroleum-based fuels will eventually deplete reserves and deteriorate the environment, Alternative Transportation Fuels: Utilisation in Combustion Engines explores the feasibility of using alternative fuels that could pave the way for the sustained operation of the transport secto