Using Lasers and X-rays to Reveal the Motion of Atoms and Electrons (LBNL Summer Lecture Series).

Using Lasers and X-rays to Reveal the Motion of Atoms and Electrons (LBNL Summer Lecture Series).

Author:

Publisher:

Published: 2009

Total Pages:

ISBN-13:

DOWNLOAD EBOOK

Summer Lecture Series 2009: The ultrafast motion of atoms and electrons lies at the heart of chemical reactions, advanced materials with exotic properties, and biological processes such as the first event in vision. Bob Schoenlein, Deputy Director for Science at the Advanced Light Source, will discuss how such processes are revealed by using laser pulses spanning a millionth of a billionth of a second, and how a new generation of light sources will bring the penetrating power of x-rays to the world of ultrafast science.


Physics of and Science with X-Ray Free-Electron Lasers

Physics of and Science with X-Ray Free-Electron Lasers

Author: J. Hastings

Publisher: IOS Press

Published: 2020-12-18

Total Pages: 272

ISBN-13: 1643681338

DOWNLOAD EBOOK

Many X-Ray Free-Electron Lasers (X-FELs) have been designed, built and commissioned since the first lasing of the Linac Coherent Light Source in the hard and soft X-ray regions, and great progress has been made in improving their performance and extending their capabilities. Meanwhile, experimental techniques to exploit the unique properties of X-FELs to explore atomic and molecular systems of interest to physics, chemistry, biology and the material sciences have also been developed. As a result, our knowledge of atomic and molecular science has been greatly extended. Nevertheless, there is still much to be accomplished, and the potential for discovery with X-FELs is still largely unexplored. The next generation of scientists will need to be well versed in both particle beams/FEL physics and X-ray photon science. This book presents material from the Enrico Fermi summer school: Physics of and Science with X-Ray Free-Electron Lasers, held at the Enrico Fermi International School of Physics in Varenna, Italy, from 26 June - 1 July 2017. The lectures presented at the school were aimed at introducing graduate students and young scientists to this fast growing and exciting scientific area, and subjects covered include basic accelerator and FEL physics, as well as an introduction to the main research topics in X-FEL-based biology, atomic molecular optical science, material sciences, high-energy density physics and chemistry. Bridging the gap between accelerator/FEL physicists and scientists from other disciplines, the book will be of interest to all those working in the field.


X-ray Lasers

X-ray Lasers

Author: Raymond C. Elton

Publisher:

Published: 1990

Total Pages: 312

ISBN-13:

DOWNLOAD EBOOK

Introduces the principles, techniques, and applications of lasers for wavelengths shorter than ultraviolet. Mostly concerned with the various methods of pumping, including exciting plasma ions, electron capture into excited ionic states, ionization of atoms and ions, and such alternative approaches.


The Physics of Laser-Atom Interactions

The Physics of Laser-Atom Interactions

Author: Dieter Suter

Publisher: Cambridge University Press

Published: 1997-10-13

Total Pages: 473

ISBN-13: 0521462398

DOWNLOAD EBOOK

A thorough introduction to the interaction of atoms with optical and magnetic fields; for graduate students and researchers.


Introduction to the Theory of Laser-Atom Interactions

Introduction to the Theory of Laser-Atom Interactions

Author: Marvin H. Mittleman

Publisher: Springer

Published: 1982-12

Total Pages: 224

ISBN-13:

DOWNLOAD EBOOK

This book grew out of a graduate course given in the Physics Department of the City College of New York for the first time during the 1976-1977 academic year and a series of lectures given at the Catholic University of Louvain, at Louvain-la-Neuve, Belgium during the Spring and Summer of 1977. I am indebted to Professor F. Brouillard and the DYMO group at that institution for the stimulation and hospitality provided during that period. In both cases, the lectures were at a level that assumed only a knowledge of elementary quantum mechanics of a typical first-year grad uate course. I have tried to continue that level of discussion in this book and to make it self-contained for any discussions that go beyond that level. In some sections of the book, the problems dealt with are too complicated to provide the entire description here. In that case, references to the original work are given.


Atom Optics with Laser Light

Atom Optics with Laser Light

Author: S. Letokhov

Publisher: CRC Press

Published: 2020-04-23

Total Pages: 127

ISBN-13: 1000658643

DOWNLOAD EBOOK

This book deals specifically with the manipulation of atoms by laser light, describing the focusing, channeling and reflection of atoms by laser fields. It also describes the potential fields required to cause the phase change of the wave function necessary for the atomic interactions to occur.


Free-Electron Lasers in the Ultraviolet and X-Ray Regime

Free-Electron Lasers in the Ultraviolet and X-Ray Regime

Author: Peter Schmüser

Publisher: Springer

Published: 2014-02-26

Total Pages: 231

ISBN-13: 9783319040820

DOWNLOAD EBOOK

The main goal of the book is to provide a systematic and didactic approach to the physics and technology of free-electron lasers. Numerous figures are used for illustrating the underlying ideas and concepts and links to other fields of physics are provided. After an introduction to undulator radiation and the low-gain FEL, the one-dimensional theory of the high-gain FEL is developed in a systematic way. Particular emphasis is put on explaining and justifying the various assumptions and approximations that are needed to obtain the differential and integral equations governing the FEL dynamics. Analytical and numerical solutions are presented and important FEL parameters are defined, such as gain length, FEL bandwidth and saturation power. One of the most important features of a high-gain FEL, the formation of microbunches, is studied at length. The increase of gain length due to beam energy spread, space charge forces, and three-dimensional effects such as betatron oscillations and optical diffraction is analyzed. The mechanism of Self-Amplified Spontaneous Emission is described theoretically and illustrated with numerous experimental results. Various methods of FEL seeding by coherent external radiation are introduced, together with experimental results. The world’s first soft X-ray FEL, the user facility FLASH at DESY, is described in some detail to give an impression of the complexity of such an accelerator-based light source. The last chapter is devoted to the new hard X-ray FELs which generate extremely intense radiation in the Angstrøm regime. The appendices contain supplementary material and more involved calculations.


Atoms in Intense Laser Fields

Atoms in Intense Laser Fields

Author: C. J. Joachain

Publisher: Cambridge University Press

Published: 2011-12-15

Total Pages: 580

ISBN-13: 9780521793018

DOWNLOAD EBOOK

The development of lasers capable of producing high-intensity pulses has opened a new area in the study of light-matter interactions. The corresponding laser fields are strong enough to compete with the Coulomb forces in controlling the dynamics of atomic systems and give rise to multiphoton processes. This book presents a unified account of this rapidly developing field of physics. The first part describes the fundamental phenomena occurring in intense laser-atom interactions and gives the basic theoretical framework to analyze them. The second part contains a detailed discussion of Floquet theory, the numerical integration of the wave equations and approximation methods for the low- and high-frequency regimes. In the third part, the main multiphoton processes are discussed: multiphoton ionization, high harmonic and attosecond pulse generation, and laser-assisted electron-atom collisions. Aimed at graduate students in atomic, molecular and optical physics, the book will also interest researchers working on laser interactions with matter.


Observing Structure and Motion in Molecules with Ultrafast Strong Field and Short Wavelength Laser Radiation

Observing Structure and Motion in Molecules with Ultrafast Strong Field and Short Wavelength Laser Radiation

Author:

Publisher:

Published: 2011

Total Pages:

ISBN-13:

DOWNLOAD EBOOK

The term "molecular movie" has come to describe efforts to track and record Angstrom-scale coherent atomic and electronic motion in a molecule. The relevant time scales for this range cover several orders of magnitude, from sub-femtosecond motion associated with electron-electron correlations, to 100-fs internal vibrations, to multi-picosecond motion associated with the dispersion and quantum revivals of molecular reorientation. Conventional methods of cinematography do not work well in this ultrafast and ultrasmall regime, but stroboscopic "pump and probe" techniques can reveal this motion with high fidelity. This talk will describe some of the methods and recent progress in exciting and controlling this motion, using both laboratory lasers and the SLAC Linac Coherent Light Source x-ray free electron laser, and will further try to relate the date to the goal of molecular movies.