Electric Power Grid Reliability Evaluation

Electric Power Grid Reliability Evaluation

Author: Chanan Singh

Publisher: John Wiley & Sons

Published: 2018-12-11

Total Pages: 350

ISBN-13: 1119486270

DOWNLOAD EBOOK

The groundbreaking book that details the fundamentals of reliability modeling and evaluation and introduces new and future technologies Electric Power Grid Reliability Evaluation deals with the effective evaluation of the electric power grid and explores the role that this process plays in the planning and designing of the expansion of the power grid. The book is a guide to the theoretical approaches and processes that underpin the electric power grid and reviews the most current and emerging technologies designed to ensure reliability. The authors—noted experts in the field—also present the algorithms that have been developed for analyzing the soundness of the power grid. A comprehensive resource, the book covers probability theory, stochastic processes, and a frequency-based approach in order to provide a theoretical foundation for reliability analysis. Throughout the book, the concepts presented are explained with illustrative examples that connect with power systems. The authors cover generation adequacy methods, and multi-node analysis which includes both multi-area as well as composite power system reliable evaluation. This important book: • Provides a guide to the basic methods of reliability modeling and evaluation • Contains a helpful review of the background of power system reliability evaluation • Includes information on new technology sources that have the potential to create a more reliable power grid • Addresses renewable energy sources and shows how they affect power outages and blackouts that pose new challenges to the power grid system Written for engineering students and professionals, Electric Power Grid Reliability Evaluation is an essential book that explores the processes and algorithms for creating a sound and reliable power grid.


Power Systems Control and Reliability

Power Systems Control and Reliability

Author: Isa S. Qamber

Publisher: CRC Press

Published: 2020-03-13

Total Pages: 167

ISBN-13: 1000710823

DOWNLOAD EBOOK

Focusing on power systems reliability and generating unit commitments, which are essential in the design and evaluation of the electric power systems for planning, control, and operation, this informative volume covers the concepts of basic reliability engineering, such as power system spinning reserve, types of load curves and their objectives and benefits, the electric power exchange, and the system operation constraints. The author explains how the probability theory plays an important role in reliability applications and discusses the probability applications in electric power systems that led to the development of the mathematical models that are illustrated in the book. The algorithms that are presented throughout the chapters will help researchers and engineers to implement their own suitable programs where needed and will also be valuable for students. The Artificial Neural Networks (ANN) and Fuzzy Logic (FL) systems are discussed and a number of load estimation models are built for some cases, where their formulas are developed. A number of developed models are presented, including the Kronecker techniques, Fourth-Order Runge-Kutta, System Multiplication Method, or Adams Method; and components with different connections and different distributions are presented. A number of examples are explained showing how to build and evaluate power plants.


Reliability Assessment of Large Electric Power Systems

Reliability Assessment of Large Electric Power Systems

Author: Roy Billinton

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 306

ISBN-13: 1461316898

DOWNLOAD EBOOK

We are very pleased to be asked to co-author this book for a variety of reasons, one of which was that it gave us further opportunity to work together. The scope proposed was very wide with the only significant proviso being that the book should be in a mongraph-style and not a teaching text. This require ment has given us the opportunity to compile a wide range of relevant material relating to present-day knowledge and application in power system reliability. As many readers will be aware, we have collaborated in many ways over a relatively long period and have co-authored two other books on reliability evaluation. Both of these previous books were structured as teaching texts. This present book is not a discourse on "how to do reliability evaluation" but a discussion on "why it should be done and what can be done and achieved" and as such does not replace or conflict with the previous books. The three books are complementary and each enhances the others. The material contained in this book is not specifically original since it is based on information which we have published in other forms either jointly or as co authors with various other people, particularly our many research students. We sincerely acknowledge the important contributions made by all these students and colleagues. There are too many to mention individually in this preface but their names appear frequently in the references at the end of each chapter.


Reliability Assessment of Electric Power Systems Using Monte Carlo Methods

Reliability Assessment of Electric Power Systems Using Monte Carlo Methods

Author: Billinton

Publisher: Springer Science & Business Media

Published: 2013-06-29

Total Pages: 361

ISBN-13: 1489913467

DOWNLOAD EBOOK

The application of quantitative reliability evaluation in electric power sys tems has now evolved to the point at which most utilities use these techniques in one or more areas of their planning, design, and operation. Most of the techniques in use are based on analytical models and resulting analytical evaluation procedures. Improvements in and availability of high-speed digi tal computers have created the opportunity to analyze many of these prob lems using stochastic simulation methods and over the last decade there has been increased interest in and use made of Monte Carlo simulation in quantitative power system reliability assessment. Monte Carlo simulation is not a new concept and recorded applications have existed for at least 50 yr. However, localized high-speed computers with large-capacity storage have made Monte Carlo simulation an available and sometimes preferable option for many power system reliability applications. Monte Carlo simulation is also an integral part of a modern undergrad uate or graduate course on reliability evaluation of general engineering systems or specialized areas such as electric power systems. It is hoped that this textbook will help formalize the many existing applications of Monte Carlo simulation and assist in their integration in teaching programs. This book presents the basic concepts associated with Monte Carlo simulation.


Electric Power System Reliability-2018

Electric Power System Reliability-2018

Author: William Smith

Publisher:

Published: 2018-09

Total Pages: 330

ISBN-13: 9780692945896

DOWNLOAD EBOOK

Electric Power System Reliability-2018 is designed to serve as an aid for those preparing for the NERC System Operator Certification exams and those seeking to familiarize themselves with the power system fundamentals necessary to fully understand and properly implement the NERC Reliability Standards. Contains many sample test questions


Assessment of Power System Reliability

Assessment of Power System Reliability

Author: Marko Čepin

Publisher: Springer Science & Business Media

Published: 2011-07-29

Total Pages: 302

ISBN-13: 0857296884

DOWNLOAD EBOOK

The importance of power system reliability is demonstrated when our electricity supply is disrupted, whether it decreases the comfort of our free time at home or causes the shutdown of our companies and results in huge economic deficits. The objective of Assessment of Power System Reliability is to contribute to the improvement of power system reliability. It consists of six parts divided into twenty chapters. The first part introduces the important background issues that affect power system reliability. The second part presents the reliability methods that are used for analyses of technical systems and processes. The third part discusses power flow analysis methods, because the dynamic aspect of a power system is an important part of related reliability assessments. The fourth part explores various aspects of the reliability assessment of power systems and their parts. The fifth part covers optimization methods. The sixth part looks at the application of reliability and optimization methods. Assessment of Power System Reliability has been written in straightforward language that continues into the mathematical representation of the methods. Power engineers and developers will appreciate the emphasis on practical usage, while researchers and advanced students will benefit from the simple examples that can facilitate their understanding of the theory behind power system reliability and that outline the procedure for application of the presented methods.


Reliability of Power Systems

Reliability of Power Systems

Author: G. F. Kovalev

Publisher:

Published: 2019

Total Pages: 237

ISBN-13: 9783030187378

DOWNLOAD EBOOK

This book presents essential methods and tools for research into the reliability of energy systems. It describes in detail the content setting, formalisation, and use of algorithms for assessing the reliability of modern, large, and complex electric power systems. The book uses a wealth of tables and illustrations to represent results and source information in a clear manner. It discusses the main operating conditions which affect the reliability of electric power systems, and describes corresponding computing tools which can help solve issues as they arise. Further, all methodologies presented here are demonstrated in numerical examples. Though primarily intended for researchers and practitioners in the field of electric power systems, the book will also benefit general readers interested in this area.


Reliability Evaluation of Engineering Systems

Reliability Evaluation of Engineering Systems

Author: Roy Billinton

Publisher: Springer Science & Business Media

Published: 2013-06-29

Total Pages: 469

ISBN-13: 1489906851

DOWNLOAD EBOOK

In response to new developments in the field, practical teaching experience, and readers' suggestions, the authors of the warmly received Reliablity Evaluation of Engineering Systems have updated and extended the work-providing extended coverage of fault trees and a more complete examination of probability distribution, among other things-without disturbing the original's concept, structure, or style.


Reliability Analysis for Asset Management of Electric Power Grids

Reliability Analysis for Asset Management of Electric Power Grids

Author: Robert Ross

Publisher: John Wiley & Sons

Published: 2019-03-18

Total Pages: 530

ISBN-13: 1119125170

DOWNLOAD EBOOK

A practical guide to facilitate statistically well-founded decisions in the management of assets of an electricity grid Effective and economic electric grid asset management and incident management involve many complex decisions on inspection, maintenance, repair and replacement. This timely reference provides statistically well-founded, tried and tested analysis methodologies for improved decision making and asset management strategy for optimum grid reliability and availability. The techniques described are also sufficiently robust to apply to small data sets enabling asset managers to deal with early failures or testing with limited sample sets. The book describes the background, concepts and statistical techniques to evaluate failure distributions, probabilities, remaining lifetime, similarity and compliancy of observed data with specifications, asymptotic behavior of parameter estimators, effectiveness of network configurations and stocks of spare parts. It also shows how the graphical representation and parameter estimation from analysis of data can be made consistent, as well as explaining modern upcoming methodologies such as the Health Index and Risk Index. Key features: Offers hands-on tools and techniques for data analysis, similarity index, failure forecasting, health and risk indices and the resulting maintenance strategies. End-of-chapter problems and solutions to facilitate self-study via a book companion website. The book is essential reading for advanced undergraduate and graduate students in electrical engineering, quality engineers, utilities and industry strategists, transmission and distribution system planners, asset managers and risk managers.