This is the first book offering an in-depth and comprehensive IoT network simulation, supported by OPNET tool. Furthermore, the book presents the simulations of IoT in general, not limited by OPNET. The authors provide rich OPNET IoT simulation codes, with detailed explanation regarding the functionalities of the model. These codes can facilitate readers’ fast implementation, and the shared model can guide readers through developing their own research. This book addresses various versions of Internet of Things (IoT), including human-centric IoT, green IoT, Narrow band IoT, Smart IoT, IoT-Cloud integration. The introduced OPNET IoT simulation provides a comprehensive platform to simulate above-mentioned IoT systems. Besides, this book introduces OPNET semi-physical simulation in detail. Based on this technology, simulated IoT and practical cloud are seamlessly connected with each other. On top of this “IoT-cloud-integration” semi-physical simulation environment, various smart IoT applications can be realized.
Integration of Distributed Energy Resources in Power Systems: Implementation, Operation and Control covers the operation of power transmission and distribution systems and their growing difficulty as the share of renewable energy sources in the world's energy mix grows and the proliferation trend of small scale power generation becomes a reality. The book gives students at the graduate level, as well as researchers and power engineering professionals, an understanding of the key issues necessary for the development of such strategies. It explores the most relevant topics, with a special focus on transmission and distribution areas. Subjects such as voltage control, AC and DC microgrids, and power electronics are explored in detail for all sources, while not neglecting the specific challenges posed by the most used variable renewable energy sources. - Presents the most relevant aspects of the integration of distributed energy into power systems, with special focus on the challenges for transmission and distribution - Explores the state-of the-art in applications of the most current technology, giving readers a clear roadmap - Deals with the technical and economic features of distributed energy resources and discusses their business models
This book discusses reliability applications for power systems, renewable energy and smart grids and highlights trends in reliable communication, fault-tolerant systems, VLSI system design and embedded systems. Further, it includes chapters on software reliability and other computer engineering and software management-related disciplines, and also examines areas such as big data analytics and ubiquitous computing. Outlining novel, innovative concepts in applied areas of reliability in electrical, electronics and computer engineering disciplines, it is a valuable resource for researchers and practitioners of reliability theory in circuit-based engineering domains.
This book reports on cutting-edge theories and methods for analyzing complex systems, such as transportation and communication networks and discusses multi-disciplinary approaches to dependability problems encountered when dealing with complex systems in practice. The book presents the most noteworthy methods and results discussed at the International Conference on Reliability and Statistics in Transportation and Communication (RelStat), which took place in Riga, Latvia on October 17 – 20, 2018. It spans a broad spectrum of topics, from mathematical models and design methodologies, to software engineering, data security and financial issues, as well as practical problems in technical systems, such as transportation and telecommunications, and in engineering education.
This book gathers high-quality research papers presented at the International Conference on Computing in Engineering and Technology (ICCET 2020) [formerly ICCASP], a flagship event in the area of engineering and emerging next-generation technologies jointly organized by the Dr. Babasaheb Ambedkar Technological University and MGM’s College of Engineering in Nanded, India, on 9-11 January 2020. Focusing on next-generation information processing systems, this second volume of the proceedings includes papers on cloud computing and information systems, artificial intelligence and the Internet of Things, hardware design and communication, and front-end design.
Due to the complexity, and heterogeneity of the smart grid and the high volume of information to be processed, artificial intelligence techniques and computational intelligence appear to be some of the enabling technologies for its future development and success. The theme of the book is “Making pathway for the grid of future” with the emphasis on trends in Smart Grid, renewable interconnection issues, planning-operation-control and reliability of grid, real time monitoring and protection, market, distributed generation and power distribution issues, power electronics applications, computer-IT and signal processing applications, power apparatus, power engineering education and industry-institute collaboration. The primary objective of the book is to review the current state of the art of the most relevant artificial intelligence techniques applied to the different issues that arise in the smart grid development.
This book comprehensively describes an end-to-end Internet of Things (IoT) architecture that is comprised of devices, network, compute, storage, platform, applications along with management and security components. It is organized into five main parts, comprising of a total of 11 chapters. Part I presents a generic IoT reference model to establish a common vocabulary for IoT solutions. This includes a detailed description of the Internet protocol layers and the Things (sensors and actuators) as well as the key business drivers to realize the IoT vision. Part II focuses on the IoT requirements that impact networking protocols and provides a layer-by-layer walkthrough of the protocol stack with emphasis on industry progress and key gaps. Part III introduces the concept of Fog computing and describes the drivers for the technology, its constituent elements, and how it relates and differs from Cloud computing. Part IV discusses the IoT services platform, the cornerstone of the solution followed by the Security functions and requirements. Finally, Part V provides a treatment of the topic of connected ecosystems in IoT along with practical applications. It then surveys the latest IoT standards and discusses the pivotal role of open source in IoT. “Faculty will find well-crafted questions and answers at the end of each chapter, suitable for review and in classroom discussion topics. In addition, the material in the book can be used by engineers and technical leaders looking to gain a deep technical understanding of IoT, as well as by managers and business leaders looking to gain a competitive edge and understand innovation opportunities for the future.” Dr. Jim Spohrer, IBM “This text provides a very compelling study of the IoT space and achieves a very good balance between engineering/technology focus and business context. As such, it is highly-recommended for anyone interested in this rapidly-expanding field and will have broad appeal to a wide cross-section of readers, i.e., including engineering professionals, business analysts, university students, and professors.” Professor Nasir Ghani, University of South Florida