Unipotent and Nilpotent Classes in Simple Algebraic Groups and Lie Algebras

Unipotent and Nilpotent Classes in Simple Algebraic Groups and Lie Algebras

Author: Martin W. Liebeck

Publisher: American Mathematical Soc.

Published: 2012-01-25

Total Pages: 394

ISBN-13: 0821869205

DOWNLOAD EBOOK

This book concerns the theory of unipotent elements in simple algebraic groups over algebraically closed or finite fields, and nilpotent elements in the corresponding simple Lie algebras. These topics have been an important area of study for decades, with applications to representation theory, character theory, the subgroup structure of algebraic groups and finite groups, and the classification of the finite simple groups. The main focus is on obtaining full information on class representatives and centralizers of unipotent and nilpotent elements. Although there is a substantial literature on this topic, this book is the first single source where such information is presented completely in all characteristics. In addition, many of the results are new--for example, those concerning centralizers of nilpotent elements in small characteristics. Indeed, the whole approach, while using some ideas from the literature, is novel, and yields many new general and specific facts concerning the structure and embeddings of centralizers.


Algebraic Groups

Algebraic Groups

Author: J. S. Milne

Publisher: Cambridge University Press

Published: 2017-09-21

Total Pages: 665

ISBN-13: 1107167485

DOWNLOAD EBOOK

Comprehensive introduction to the theory of algebraic group schemes over fields, based on modern algebraic geometry, with few prerequisites.


Representations of Algebraic Groups

Representations of Algebraic Groups

Author: Jens Carsten Jantzen

Publisher: American Mathematical Soc.

Published: 2003

Total Pages: 594

ISBN-13: 082184377X

DOWNLOAD EBOOK

Gives an introduction to the general theory of representations of algebraic group schemes. This title deals with representation theory of reductive algebraic groups and includes topics such as the description of simple modules, vanishing theorems, Borel-Bott-Weil theorem and Weyl's character formula, and Schubert schemes and lne bundles on them.


An Introduction to Algebraic Geometry and Algebraic Groups

An Introduction to Algebraic Geometry and Algebraic Groups

Author: Meinolf Geck

Publisher: Oxford University Press

Published: 2013-03-14

Total Pages: 321

ISBN-13: 019967616X

DOWNLOAD EBOOK

An accessible text introducing algebraic groups at advanced undergraduate and early graduate level, this book covers the conjugacy of Borel subgroups and maximal tori, the theory of algebraic groups with a BN-pair, Frobenius maps on affine varieties and algebraic groups, zeta functions and Lefschetz numbers for varieties over finite fields.


Linear Algebraic Groups

Linear Algebraic Groups

Author: James E. Humphreys

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 259

ISBN-13: 1468494430

DOWNLOAD EBOOK

James E. Humphreys is a distinguished Professor of Mathematics at the University of Massachusetts at Amherst. He has previously held posts at the University of Oregon and New York University. His main research interests include group theory and Lie algebras, and this graduate level text is an exceptionally well-written introduction to everything about linear algebraic groups.


Conjugacy Classes in Semisimple Algebraic Groups

Conjugacy Classes in Semisimple Algebraic Groups

Author: James E. Humphreys

Publisher: American Mathematical Soc.

Published: 1995

Total Pages: 218

ISBN-13: 0821852760

DOWNLOAD EBOOK

Provides a useful exposition of results on the structure of semisimple algebraic groups over an arbitrary algebraically closed field. After the fundamental work of Borel and Chevalley in the 1950s and 1960s, further results were obtained over the next thirty years on conjugacy classes and centralizers of elements of such groups.


Linear Algebraic Groups

Linear Algebraic Groups

Author: T.A. Springer

Publisher: Springer Science & Business Media

Published: 2010-10-12

Total Pages: 347

ISBN-13: 0817648402

DOWNLOAD EBOOK

The first edition of this book presented the theory of linear algebraic groups over an algebraically closed field. The second edition, thoroughly revised and expanded, extends the theory over arbitrary fields, which are not necessarily algebraically closed. It thus represents a higher aim. As in the first edition, the book includes a self-contained treatment of the prerequisites from algebraic geometry and commutative algebra, as well as basic results on reductive groups. As a result, the first part of the book can well serve as a text for an introductory graduate course on linear algebraic groups.


Lie Groups and Algebraic Groups

Lie Groups and Algebraic Groups

Author: Arkadij L. Onishchik

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 347

ISBN-13: 364274334X

DOWNLOAD EBOOK

This book is based on the notes of the authors' seminar on algebraic and Lie groups held at the Department of Mechanics and Mathematics of Moscow University in 1967/68. Our guiding idea was to present in the most economic way the theory of semisimple Lie groups on the basis of the theory of algebraic groups. Our main sources were A. Borel's paper [34], C. ChevalIey's seminar [14], seminar "Sophus Lie" [15] and monographs by C. Chevalley [4], N. Jacobson [9] and J-P. Serre [16, 17]. In preparing this book we have completely rearranged these notes and added two new chapters: "Lie groups" and "Real semisimple Lie groups". Several traditional topics of Lie algebra theory, however, are left entirely disregarded, e.g. universal enveloping algebras, characters of linear representations and (co)homology of Lie algebras. A distinctive feature of this book is that almost all the material is presented as a sequence of problems, as it had been in the first draft of the seminar's notes. We believe that solving these problems may help the reader to feel the seminar's atmosphere and master the theory. Nevertheless, all the non-trivial ideas, and sometimes solutions, are contained in hints given at the end of each section. The proofs of certain theorems, which we consider more difficult, are given directly in the main text. The book also contains exercises, the majority of which are an essential complement to the main contents.