Data Quality and Record Linkage Techniques

Data Quality and Record Linkage Techniques

Author: Thomas N. Herzog

Publisher: Springer Science & Business Media

Published: 2007-05-23

Total Pages: 225

ISBN-13: 0387695052

DOWNLOAD EBOOK

This book offers a practical understanding of issues involved in improving data quality through editing, imputation, and record linkage. The first part of the book deals with methods and models, focusing on the Fellegi-Holt edit-imputation model, the Little-Rubin multiple-imputation scheme, and the Fellegi-Sunter record linkage model. The second part presents case studies in which these techniques are applied in a variety of areas, including mortgage guarantee insurance, medical, biomedical, highway safety, and social insurance as well as the construction of list frames and administrative lists. This book offers a mixture of practical advice, mathematical rigor, management insight and philosophy.


Analysis of Poverty Data by Small Area Estimation

Analysis of Poverty Data by Small Area Estimation

Author: Monica Pratesi

Publisher: John Wiley & Sons

Published: 2016-02-23

Total Pages: 485

ISBN-13: 1118815017

DOWNLOAD EBOOK

A comprehensive guide to implementing SAE methods for poverty studies and poverty mapping There is an increasingly urgent demand for poverty and living conditions data, in relation to local areas and/or subpopulations. Policy makers and stakeholders need indicators and maps of poverty and living conditions in order to formulate and implement policies, (re)distribute resources, and measure the effect of local policy actions. Small Area Estimation (SAE) plays a crucial role in producing statistically sound estimates for poverty mapping. This book offers a comprehensive source of information regarding the use of SAE methods adapted to these distinctive features of poverty data derived from surveys and administrative archives. The book covers the definition of poverty indicators, data collection and integration methods, the impact of sampling design, weighting and variance estimation, the issue of SAE modelling and robustness, the spatio-temporal modelling of poverty, and the SAE of the distribution function of income and inequalities. Examples of data analyses and applications are provided, and the book is supported by a website describing scripts written in SAS or R software, which accompany the majority of the presented methods. Key features: Presents a comprehensive review of SAE methods for poverty mapping Demonstrates the applications of SAE methods using real-life case studies Offers guidance on the use of routines and choice of websites from which to download them Analysis of Poverty Data by Small Area Estimation offers an introduction to advanced techniques from both a practical and a methodological perspective, and will prove an invaluable resource for researchers actively engaged in organizing, managing and conducting studies on poverty.