Nuclear Fusion Research

Nuclear Fusion Research

Author: Robert E. H. Clark

Publisher: Springer Science & Business Media

Published: 2006-01-20

Total Pages: 467

ISBN-13: 354027362X

DOWNLOAD EBOOK

It became clear in the early days of fusion research that the effects of the containment vessel (erosion of "impurities") degrade the overall fusion plasma performance. Progress in controlled nuclear fusion research over the last decade has led to magnetically confined plasmas that, in turn, are sufficiently powerful to damage the vessel structures over its lifetime. This book reviews current understanding and concepts to deal with this remaining critical design issue for fusion reactors. It reviews both progress and open questions, largely in terms of available and sought-after plasma-surface interaction data and atomic/molecular data related to these "plasma edge" issues.


Plasma Physics and Controlled Nuclear Fusion

Plasma Physics and Controlled Nuclear Fusion

Author: Kenro Miyamoto

Publisher: Springer Science & Business Media

Published: 2005-06-09

Total Pages: 388

ISBN-13: 9783540242178

DOWNLOAD EBOOK

The primary objectives of this book are, firstly, to present the essential theoretical background needed to understand recent fusion research and, secondly, to describe the current status of fusion research for graduate students and senior undergraduates. It will also serve as a useful reference for scientists and engineers working in the related fields. In Part I, Plasma Physics, the author explains the basics of magneto-hydrodynamics and kinetic theory in a simple and compact way and, at the same time, covers important new topics for fusion studies such as the ballooning representation, instabilities driven by energetic particles, and various plasma models for computer simulations. Part II, Controlled Nuclear Fusion, attempts to review the "big picture" in fusion research. Mathematical derivations are comprehensively explained to better enable readers to later concentrate on the physics. All important phenomena and technologies are addressed, with a particular emphasis on the topics of most concern in current research.


Nuclear Power Safety

Nuclear Power Safety

Author: James H. Rust

Publisher: Elsevier

Published: 2013-10-22

Total Pages: 419

ISBN-13: 1483285448

DOWNLOAD EBOOK

A concise and current treatment of the subject of nuclear power safety, this work addresses itself to such issues of public concern as: radioactivity in routine effluents and its effect on human health and the environment, serious reactor accidents and their consequences, transportation accidents involving radioactive waste, the disposal of radioactive waste, particularly high-level wastes, and the possible theft of special nuclear materials and their fabrication into a weapon by terrorists. The implementation of the defense-in-depth concept of nuclear power safety is also discussed. Of interest to all undergraduate and graduate students of nuclear engineering, this work assumes a basic understanding of scientific and engineering principles and some familiarity with nuclear power reactors


Nuclear Fusion

Nuclear Fusion

Author: Igor Girka

Publisher: BoD – Books on Demand

Published: 2019-04-17

Total Pages: 116

ISBN-13: 1789857872

DOWNLOAD EBOOK

Power production and its consumption and distribution are among the most urgent problems of mankind. Despite positive dynamics in introducing renewable sources of energy, nuclear power plants still remain the major source of carbon-free electric energy. Fusion can be an alternative to fission in the foreseeable future. Research in the field of controlled nuclear fusion has been ongoing for almost 100 years. Magnetic confinement systems are the most promising for effective implementation, and the International Thermonuclear Experimental Reactor is under construction in France. To accomplish nuclear fusion on Earth, we have to resolve a number of scientific and technological problems. This monograph includes selected chapters on nuclear physics and mechanical engineering within the scope of nuclear fusion.


Otto Hahn and the Rise of Nuclear Physics

Otto Hahn and the Rise of Nuclear Physics

Author: W. R. Shea

Publisher: Springer Science & Business Media

Published: 1983-08-31

Total Pages: 274

ISBN-13: 9789027715845

DOWNLOAD EBOOK

and less as the emanation unden\'ent radioactive decay, and it became motion less after about 30 seconds. Since this process was occurring very rapidly, Hahn and Sackur marked the position of the pointer on a scale with pencil marks. As a timing device they used a metronome that beat out intervals of approximately 1. 3 seconds. This simple method enabled them to determine that the half-life of the emanations of actinium and emanium were the same. Although Giesel's measurements had been more precise than Debierne's, the name of actinium was retained since Debierne had made the discovery first. Hahn now returned to his sample of barium chloride. He soon conjectured that the radium-enriched preparations must harbor another radioactive sub stance. The liquids resulting from fractional crystallization, which were sup posed to contain radium only, produced two kinds of emanation. One was the long-lived emanation of radium, the other had a short life similar to the emanation produced by thorium. Hahn tried to separate this substance by adding some iron to the solutions that should have been free of radium, but to no avail. Later the reason for his failure became apparent. The element that emitted the thorium emanation was constantly replenished by the ele ment believed to be radium. Hahn succeeded in enriching a preparation until it was more than 100,000 times as intensive in its radiation as the same quantity of thorium.


The Manhattan Project

The Manhattan Project

Author: Francis George Gosling

Publisher: DIANE Publishing

Published: 1999

Total Pages: 75

ISBN-13: 0788178806

DOWNLOAD EBOOK

A history of the origins and development of the American atomic bomb program during WWII. Begins with the scientific developments of the pre-war years. Details the role of the U.S. government in conducting a secret, nationwide enterprise that took science from the laboratory and into combat with an entirely new type of weapon. Concludes with a discussion of the immediate postwar period, the debate over the Atomic Energy Act of 1946, and the founding of the Atomic Energy Commission. Chapters: the Einstein letter; physics background, 1919-1939; early government support; the atomic bomb and American strategy; and the Manhattan district in peacetime. Illustrated.


Atomic and Molecular Physics of Controlled Thermonuclear Fusion

Atomic and Molecular Physics of Controlled Thermonuclear Fusion

Author: Douglass E. Joachain

Publisher: Springer Science & Business Media

Published: 2013-06-29

Total Pages: 578

ISBN-13: 1461337631

DOWNLOAD EBOOK

The need for long-term energy sources, in particular for our highly technological society, has become increasingly apparent during the last decade. One of these sources, of tremendous poten tial importance, is controlled thermonuclear fusion. The goal of controlled thermonuclear fusion research is to produce a high-temperature, completely ionized plasma in which the nuclei of two hydrogen isotopes, deuterium and tritium, undergo enough fusion reactions so that the nuclear energy released by these fusion reactions can be transformed into heat and electricity with an overall gain in energy. This requires average kinetic energies for the nuclei of the order of 10 keV, corresponding to temperatures of about 100 million degrees. Moreover, the plasma must remain confined for a certain time interval, during which sufficient energy must be produced to heat the plasma, overcome the energy losses and supply heat to the power station. At present, two main approaches are being investigated to achieve these objectives: magnetic confinement and inertial con finement. In magnetic confinement research, a low-density plasma is heated by electric currents, assisted by additional heating methods such as radio-frequency heating or neutral beam injection, and the confinement is achieved by using various magnetic field configurations. Examples of these are the plasmas produced in stellarator and tokamak devices.


Controlled Fusion and Plasma Physics

Controlled Fusion and Plasma Physics

Author: Kenro Miyamoto

Publisher: CRC Press

Published: 2006-10-23

Total Pages: 424

ISBN-13: 9781584887096

DOWNLOAD EBOOK

Resulting from ongoing, international research into fusion processes, the International Tokamak Experimental Reactor (ITER) is a major step in the quest for a new energy source.The first graduate-level text to cover the details of ITER, Controlled Fusion and Plasma Physics introduces various aspects and issues of recent fusion research activities through the shortest access path. The distinguished author breaks down the topic by first dealing with fusion and then concentrating on the more complex subject of plasma physics. The book begins with the basics of controlled fusion research, followed by discussions on tokamaks, reversed field pinch (RFP), stellarators, and mirrors. The text then explores ideal magnetohydrodynamic (MHD) instabilities, resistive instabilities, neoclassical tearing mode, resistive wall mode, the Boltzmann equation, the Vlasov equation, and Landau damping. After covering dielectric tensors of cold and hot plasmas, the author discusses the physical mechanisms of wave heating and noninductive current drive. The book concludes with an examination of the challenging issues of plasma transport by turbulence, such as magnetic fluctuation and zonal flow. Controlled Fusion and Plasma Physics clearly and thoroughly promotes intuitive understanding of the developments of the principal fusion programs and the relevant fundamental and advanced plasma physics associated with each program.