Understanding Fluid Flow takes a fresh approach to introducing fluid dynamics, with physical reasoning and mathematical developments inextricably intertwined. The 'dry' fluid dynamics described by potential theory is set within the context of real viscous flows to give fundamental insight into how fluids behave. The book gives a flavor of theoretical, experimental and numerical approaches to analyzing fluid flow, and implicitly develops skills in applied mathematical modeling of physical systems. It is supplemented by movies that are freely downloadable.
To classify a book as 'experimental' rather than 'theoretical' or as 'pure' rather than 'applied' is liable to imply umeal distinctions. Nevertheless, some Classification is necessary to teIl the potential reader whether the book is for him. In this spirit, this book may be said to treat fluid dynamies as a branch of physics, rather than as a branch of applied mathematics or of engineering. I have often heard expressions of the need for such a book, and certainly I have feIt it in my own teaching. I have written it primariIy for students of physics and of physics-based applied science, aIthough I hope others may find it useful. The book differs from existing 'fundamental' books in placing much greater emphasis on what we know through laboratory experiments and their physical interpretation and less on the mathe matieal formalism. It differs from existing 'applied' books in that the choice of topics has been made for the insight they give into the behaviour of fluids in motion rather than for their practical importance. There are differences also from many existing books on fluid dynamics in the branches treated, reflecting to some extent shifts of interest in reeent years. In particular, geophysical and astrophysical applications have prompted important fundamental developments in topics such as conveetion, stratified flow, and the dynamics of rotating fluids. These developments have hitherto been reflected in the contents of textbooks only to a limited extent.
Physics of Continuous Matter: Exotic and Everyday Phenomena in the Macroscopic World, Second Edition provides an introduction to the basic ideas of continuum physics and their application to a wealth of macroscopic phenomena. The text focuses on the many approximate methods that offer insight into the rich physics hidden in fundamental continuum mechanics equations. Like its acclaimed predecessor, this second edition introduces mathematical tools on a "need-to-know" basis. New to the Second Edition This edition includes three new chapters on elasticity of slender rods, energy, and entropy. It also offers more margin drawings and photographs and improved images of simulations. Along with reorganizing much of the material, the author has revised many of the physics arguments and mathematical presentations to improve clarity and consistency. The collection of problems at the end of each chapter has been expanded as well. These problems further develop the physical and mathematical concepts presented. With worked examples throughout, this book clearly illustrates both qualitative and quantitative physics reasoning. It emphasizes the importance in understanding the physical principles behind equations and the conditions underlying approximations. A companion website provides a host of ancillary materials, including software programs, color figures, and additional problems.
This book deals with the simulation of the incompressible Navier-Stokes equations for laminar and turbulent flows. The book is limited to explaining and employing the finite difference method. It furnishes a large number of source codes which permit to play with the Navier-Stokes equations and to understand the complex physics related to fluid mechanics. Numerical simulations are useful tools to understand the complexity of the flows, which often is difficult to derive from laboratory experiments. This book, then, can be very useful to scholars doing laboratory experiments, since they often do not have extra time to study the large variety of numerical methods; furthermore they cannot spend more time in transferring one of the methods into a computer language. By means of numerical simulations, for example, insights into the vorticity field can be obtained which are difficult to obtain by measurements. This book can be used by graduate as well as undergraduate students while reading books on theoretical fluid mechanics; it teaches how to simulate the dynamics of flow fields on personal computers. This will provide a better way of understanding the theory. Two chapters on Large Eddy Simulations have been included, since this is a methodology that in the near future will allow more universal turbulence models for practical applications. The direct simulation of the Navier-Stokes equations (DNS) is simple by finite-differences, that are satisfactory to reproduce the dynamics of turbulent flows. A large part of the book is devoted to the study of homogeneous and wall turbulent flows. In the second chapter the elementary concept of finite difference is given to solve parabolic and elliptical partial differential equations. In successive chapters the 1D, 2D, and 3D Navier-Stokes equations are solved in Cartesian and cylindrical coordinates. Finally, Large Eddy Simulations are performed to check the importance of the subgrid scale models. Results for turbulent and laminar flows are discussed, with particular emphasis on vortex dynamics. This volume will be of interest to graduate students and researchers wanting to compare experiments and numerical simulations, and to workers in the mechanical and aeronautic industries.
Suitable for both a first or second course in fluid mechanics at the graduate or advanced undergraduate level, this book presents the study of how fluids behave and interact under various forces and in various applied situations - whether in the liquid or gaseous state or both.
Computational Fluid Dynamics (CFD) is an important design tool in engineering and also a substantial research tool in various physical sciences as well as in biology. The objective of this book is to provide university students with a solid foundation for understanding the numerical methods employed in today's CFD and to familiarise them with modern CFD codes by hands-on experience. It is also intended for engineers and scientists starting to work in the field of CFD or for those who apply CFD codes. Due to the detailed index, the text can serve as a reference handbook too. Each chapter includes an extensive bibliography, which provides an excellent basis for further studies.
One of the bestselling books in the field, Introduction to Fluid Mechanics continues to provide readers with a balanced and comprehensive approach to mastering critical concepts. The new seventh edition once again incorporates a proven problem-solving methodology that will help them develop an orderly plan to finding the right solution. It starts with basic equations, then clearly states assumptions, and finally, relates results to expected physical behavior. Many of the steps involved in analysis are simplified by using Excel.
To describe the flow of industrial fluids, the technical literature generally takes either a highly theoretical, specialized approach that can make extracting practical information difficult, or highly practical one that is too simplified and focused on equipment to impart a thorough understanding. Flow of Industrial Fluids: Theory and Equations takes a novel approach that bridges the gap between theory and practice. In a uniquely structured series of chapters and appendices, it presents the basic theory and equations of fluid flow in a logical, common-sense manner with just the right amount of detail and discussion. Detailed derivations and explanations are relegated to chapter-specific appendices, making both aspects easier to access. The treatment is further organized to address incompressible flow before compressible flow, allowing the more complex theory and associated equations to build on the less complex. The measurement and control of fluid flow requires a firm understanding of flow phenomena. Engineer or technician, student or professional, if you have to deal with industrial flow processes, pumps, turbines, ejectors, or piping systems, you will find that Flow of Industrial Fluids effectively links theory to practice and builds the kind of insight you need to solve real-world problems.
Flow Visualization always plays an important role in understanding flow phenomena and contributes significantly to the physical intuitive reasonong necessary to successfully apply the knowledge gained to real life situations. This book is designed to enhance the understanding of basic flow phenomena through over 200 high quality flow visualization photographs, some in colour, and explanations. The book opens with a summary of flow visualization methods, and then proceeds to present flow phenomena as revealed by various flow visualization techniques. The treatment ranges from fundamental aspects, such as laminar and turbulent flow, to engineering applications; for example, understanding why cavitation damage occurred on the runner of a Francis turbine. Current and new visualization techniques are employed such that invisible flow, as in air and water, is made clearly visible and comprehensible. Visualized Flow was compiled and edited under the guidance of the Japanese Society of Mechanical Engineers. This English edition will be indispensable to engineers, researchers and students in understanding flow phenomena across the wide range of sciences wherever fluid flow is important.
This book discusses the fundamental principles and equations governing the motion of incompressible Newtonian fluids, and simultaneously introduces numerical methods for solving a broad range of problems. Appendices provide a wealth of information that establishes the necessary mathematical and computational framework.