Control and Dynamic Systems V51: Robust Control System Techniques and Applications

Control and Dynamic Systems V51: Robust Control System Techniques and Applications

Author: C.T. Leonides

Publisher: Elsevier

Published: 2012-12-02

Total Pages: 491

ISBN-13: 0323163068

DOWNLOAD EBOOK

Control and Dynamic Systems: Advances in Theory and Application, Volume 51: Robust Control System Techniques and Applications Part 2 of 2 discusses system robustness techniques. This volume presents a comprehensive treatment of robust system techniques in nonlinear, linear, and multilinear interval systems. It also covers techniques for dealing with system disturbances, system modeling approximations, and parameter uncertainties. This volume ends by reviewing robustness techniques for systems with structured state space uncertainty. This volume will be of great use as a reference source for mechanical and electrical engineers.


Controllability of Complex Networks at Minimum Cost

Controllability of Complex Networks at Minimum Cost

Author: Gustav Lindmark

Publisher: Linköping University Electronic Press

Published: 2020-04-30

Total Pages: 38

ISBN-13: 9179298478

DOWNLOAD EBOOK

The control-theoretic notion of controllability captures the ability to guide a system toward a desired state with a suitable choice of inputs. Controllability of complex networks such as traffic networks, gene regulatory networks, power grids etc. can for instance enable efficient operation or entirely new applicative possibilities. However, when control theory is applied to complex networks like these, several challenges arise. This thesis considers some of them, in particular we investigate how a given network can be rendered controllable at a minimum cost by placement of control inputs or by growing the network with additional edges between its nodes. As cost function we take either the number of control inputs that are needed or the energy that they must exert. A control input is called unilateral if it can assume either positive or negative values, but not both. Motivated by the many applications where unilateral controls are common, we reformulate classical controllability results for this particular case into a more computationally-efficient form that enables a large scale analysis. Assuming that each control input targets only one node (called a driver node), we show that the unilateral controllability problem is to a high degree structural: from topological properties of the network we derive theoretical lower bounds for the minimal number of unilateral control inputs, bounds similar to those that have already been established for the minimal number of unconstrained control inputs (e.g. can assume both positive and negative values). With a constructive algorithm for unilateral control input placement we also show that the theoretical bounds can often be achieved. A network may be controllable in theory but not in practice if for instance unreasonable amounts of control energy are required to steer it in some direction. For the case with unconstrained control inputs, we show that the control energy depends on the time constants of the modes of the network, the longer they are, the less energy is required for control. We also present different strategies for the problem of placing driver nodes such that the control energy requirements are reduced (assuming that theoretical controllability is not an issue). For the most general class of networks we consider, directed networks with arbitrary eigenvalues (and thereby arbitrary time constants), we suggest strategies based on a novel characterization of network non-normality as imbalance in the distribution of energy over the network. Our formulation allows to quantify network non-normality at a node level as combination of two different centrality metrics. The first measure quantifies the influence that each node has on the rest of the network, while the second measure instead describes the ability to control a node indirectly from the other nodes. Selecting the nodes that maximize the network non-normality as driver nodes significantly reduces the energy needed for control. Growing a network, i.e. adding more edges to it, is a promising alternative to reduce the energy needed to control it. We approach this by deriving a sensitivity function that enables to quantify the impact of an edge modification with the H2 and H? norms, which in turn can be used to design edge additions that improve commonly used control energy metrics.


Minimax Approaches to Robust Model Predictive Control

Minimax Approaches to Robust Model Predictive Control

Author: Johan Löfberg

Publisher: Linköping University Electronic Press

Published: 2003-04-11

Total Pages: 212

ISBN-13: 9173736228

DOWNLOAD EBOOK

Controlling a system with control and state constraints is one of the most important problems in control theory, but also one of the most challenging. Another important but just as demanding topic is robustness against uncertainties in a controlled system. One of the most successful approaches, both in theory and practice, to control constrained systems is model predictive control (MPC). The basic idea in MPC is to repeatedly solve optimization problems on-line to find an optimal input to the controlled system. In recent years, much effort has been spent to incorporate the robustness problem into this framework. The main part of the thesis revolves around minimax formulations of MPC for uncertain constrained linear discrete-time systems. A minimax strategy in MPC means that worst-case performance with respect to uncertainties is optimized. Unfortunately, many minimax MPC formulations yield intractable optimization problems with exponential complexity. Minimax algorithms for a number of uncertainty models are derived in the thesis. These include systems with bounded external additive disturbances, systems with uncertain gain, and systems described with linear fractional transformations. The central theme in the different algorithms is semidefinite relaxations. This means that the minimax problems are written as uncertain semidefinite programs, and then conservatively approximated using robust optimization theory. The result is an optimization problem with polynomial complexity. The use of semidefinite relaxations enables a framework that allows extensions of the basic algorithms, such as joint minimax control and estimation, and approx- imation of closed-loop minimax MPC using a convex programming framework. Additional topics include development of an efficient optimization algorithm to solve the resulting semidefinite programs and connections between deterministic minimax MPC and stochastic risk-sensitive control. The remaining part of the thesis is devoted to stability issues in MPC for continuous-time nonlinear unconstrained systems. While stability of MPC for un-constrained linear systems essentially is solved with the linear quadratic controller, no such simple solution exists in the nonlinear case. It is shown how tools from modern nonlinear control theory can be used to synthesize finite horizon MPC controllers with guaranteed stability, and more importantly, how some of the tech- nical assumptions in the literature can be dispensed with by using a slightly more complex controller.


Uncertain Models and Robust Control

Uncertain Models and Robust Control

Author: Alexander Weinmann

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 699

ISBN-13: 3709167116

DOWNLOAD EBOOK

This coherent introduction to the theory and methods of robust control system design clarifies and unifies the presentation of significant derivations and proofs. The book contains a thorough treatment of important material of uncertainties and robust control otherwise scattered throughout the literature.


Flight Test System Identification

Flight Test System Identification

Author: Roger Larsson

Publisher: Linköping University Electronic Press

Published: 2019-05-15

Total Pages: 326

ISBN-13: 9176850706

DOWNLOAD EBOOK

With the demand for more advanced fighter aircraft, relying on unstable flight mechanical characteristics to gain flight performance, more focus has been put on model-based system engineering to help with the design work. The flight control system design is one important part that relies on this modeling. Therefore, it has become more important to develop flight mechanical models that are highly accurate in the whole flight envelope. For today’s modern fighter aircraft, the basic flight mechanical characteristics change between linear and nonlinear as well as stable and unstable as an effect of the desired capability of advanced maneuvering at subsonic, transonic and supersonic speeds. This thesis combines the subject of system identification, which is the art of building mathematical models of dynamical systems based on measurements, with aeronautical engineering in order to find methods for identifying flight mechanical characteristics. Here, some challenging aeronautical identification problems, estimating model parameters from flight-testing, are treated. Two aspects are considered. The first is online identification during flight-testing with the intent to aid the engineers in the analysis process when looking at the flight mechanical characteristics. This will also ensure that enough information is available in the resulting test data for post-flight analysis. Here, a frequency domain method is used. An existing method has been developed further by including an Instrumental Variable approach to take care of noisy data including atmospheric turbulence and by a sensor-fusion step to handle varying excitation during an experiment. The method treats linear systems that can be both stable and unstable working under feedback control. An experiment has been performed on a radio-controlled demonstrator aircraft. For this, multisine input signals have been designed and the results show that it is possible to perform more time-efficient flight-testing compared with standard input signals. The other aspect is post-flight identification of nonlinear characteristics. Here the properties of a parameterized observer approach, using a prediction-error method, are investigated. This approach is compared with four other methods for some test cases. It is shown that this parameterized observer approach is the most robust one with respect to noise disturbances and initial offsets. Another attractive property is that no user parameters have to be tuned by the engineers in order to get the best performance. All methods in this thesis have been validated on simulated data where the system is known, and have also been tested on real flight test data. Both of the investigated approaches show promising results.


Structure-Exploiting Numerical Algorithms for Optimal Control

Structure-Exploiting Numerical Algorithms for Optimal Control

Author: Isak Nielsen

Publisher: Linköping University Electronic Press

Published: 2017-04-20

Total Pages: 202

ISBN-13: 9176855287

DOWNLOAD EBOOK

Numerical algorithms for efficiently solving optimal control problems are important for commonly used advanced control strategies, such as model predictive control (MPC), but can also be useful for advanced estimation techniques, such as moving horizon estimation (MHE). In MPC, the control input is computed by solving a constrained finite-time optimal control (CFTOC) problem on-line, and in MHE the estimated states are obtained by solving an optimization problem that often can be formulated as a CFTOC problem. Common types of optimization methods for solving CFTOC problems are interior-point (IP) methods, sequential quadratic programming (SQP) methods and active-set (AS) methods. In these types of methods, the main computational effort is often the computation of the second-order search directions. This boils down to solving a sequence of systems of equations that correspond to unconstrained finite-time optimal control (UFTOC) problems. Hence, high-performing second-order methods for CFTOC problems rely on efficient numerical algorithms for solving UFTOC problems. Developing such algorithms is one of the main focuses in this thesis. When the solution to a CFTOC problem is computed using an AS type method, the aforementioned system of equations is only changed by a low-rank modification between two AS iterations. In this thesis, it is shown how to exploit these structured modifications while still exploiting structure in the UFTOC problem using the Riccati recursion. Furthermore, direct (non-iterative) parallel algorithms for computing the search directions in IP, SQP and AS methods are proposed in the thesis. These algorithms exploit, and retain, the sparse structure of the UFTOC problem such that no dense system of equations needs to be solved serially as in many other algorithms. The proposed algorithms can be applied recursively to obtain logarithmic computational complexity growth in the prediction horizon length. For the case with linear MPC problems, an alternative approach to solving the CFTOC problem on-line is to use multiparametric quadratic programming (mp-QP), where the corresponding CFTOC problem can be solved explicitly off-line. This is referred to as explicit MPC. One of the main limitations with mp-QP is the amount of memory that is required to store the parametric solution. In this thesis, an algorithm for decreasing the required amount of memory is proposed. The aim is to make mp-QP and explicit MPC more useful in practical applications, such as embedded systems with limited memory resources. The proposed algorithm exploits the structure from the QP problem in the parametric solution in order to reduce the memory footprint of general mp-QP solutions, and in particular, of explicit MPC solutions. The algorithm can be used directly in mp-QP solvers, or as a post-processing step to an existing solution.


Tracking the Wanders of Nature

Tracking the Wanders of Nature

Author: Clas Veibäck

Publisher: Linköping University Electronic Press

Published: 2018-11-20

Total Pages: 190

ISBN-13: 9176852008

DOWNLOAD EBOOK

Target tracking is a mature topic with over half a century of mainly military and aviation research. The field has lately expanded into a range of civilian applications due to the development of cheap sensors and improved computational power. With the rise of new applications, new challenges emerge, and with better hardware there is an opportunity to employ more elaborated algorithms. There are five main contributions to the field of target tracking in this thesis. Contributions I-IV concern the development of non-conventional models for target tracking and the resulting estimation methods. Contribution V concerns a reformulation for improved performance. To show the functionality and applicability of the contributions, all proposed methods are applied to and verified on experimental data related to tracking of animals or other objects in nature. In Contribution I, sparse Gaussian processes are proposed to model behaviours of targets that are caused by influences from the environment, such as wind or obstacles. The influences are learned online as a part of the state estimation using an extended Kalman filter. The method is also adapted to handle time-varying influences and to identify dynamic systems. It is shown to improve accuracy over the nearly constant velocity and acceleration models in simulation. The method is also evaluated in a sea ice tracking application using data from a radar on Svalbard. In Contribution II, a state-space model is derived that incorporates observations with uncertain timestamps. An example of such observations could be traces left by a target. Estimation accuracy is shown to be better than the alternative of disregarding the observation. The position of an orienteering sprinter is improved using the control points as additional observations. In Contribution III, targets that are confined to a certain space, such as animals in captivity, are modelled to avoid collision with the boundaries by turning. The proposed model forces the predictions to remain inside the confined space compared to conventional models that may suffer from infeasible predictions. In particular the model improves robustness against occlusions. The model is successfully used to track dolphins in a dolphinarium as they swim in a basin with occluded sections. In Contribution IV, an extension to the jump Markov model is proposed that incorporates observations of the mode that are state-independent. Normally, the mode is estimated by comparing actual and predicted observations of the state. However, sensor signals may provide additional information directly dependent on the mode. Such information from a video recorded by biologists is used to estimate take-off times and directions of birds captured in circular cages. The method is shown to compare well with a more time-consuming manual method. In Contribution V, a reformulation of the labelled multi-Bernoulli filter is used to exploit a structure of the algorithm to attain a more efficient implementation.Modern target tracking algorithms are often very demanding, so sound approximations and clever implementations are needed to obtain reasonable computational performance. The filter is integrated in a full framework for tracking sea ice, from pre-processing to presentation of results. Målföljning (eng. target tracking) är ett välutforskat ämne med en historia som sträcker sig tillbaka till åtminstone 30-talet. Då tävlade en handfull nationer om att snabbast kunna upptäcka fienden innan det var för sent. Traditionellt sett har målföljning fortsatt att vara starkt förknippat med militära tillämpningar och flygfart. Det är först på senare år som billiga och kommersiellt tillgängliga sensorer har öppnat upp för en mängd betydligt fredligare användningsområden. Målföljning skulle kunna beskrivas som lokalisering av främmande objekt genom att samla in data från sensorer. Den här avhandlingen behandlar framförallt målföljning av olika sorters djur där data samlas in med videokameror. Det finns två bakomliggande syften. Det ena handlar om att underlätta forskning för biologer och det andra handlar om att skapa tekniska lösningar för att underlätta skyddet av sällsynta djur. Även målföljning av drivis där data samlas in med radar behandlas. Trots den vitt skilda tillämpningen är många metoder desamma. Syftet är att hantera drivis i norra ishavet där detektion och målföljning är viktiga komponenter för att undvika kollisioner. Biologer lägger ofta en ansenlig mängd tid på att samla in, annotera och sortera data. Det är tid som kan spenderas på mer givande forskningsaktiviteter. Med videokamera, bildbehandling och moderna algoritmer för målföljning är det möjligt att i viss mån automatisera datainsamlingen. Med automatisering kan mer information samlas in än med traditionella metoder och längre experiment kan ofta genomföras. Ytterligare en fördel är att man kan minska påverkan på djuren. Parkvakterna i många nationalparker kämpar dagligen med intrång från tjuvjägare. De har ytterst begränsade resurser och utsätter sina liv för stor fara. Bestånden minskar fortfarande för många djurarter som går en mörk framtid till mötes. För att vända trenden behövs stora insatser på många fronter samtidigt. Målföljning kan bidra med att på ett kostnadseffektivt sätt tillhandahålla övervakning av nationalparker. Kännedom om var djuren befinner sig underlättar koordinering av parkvakternas insatser för att skydda djuren. Målföljning kan ske med ett flertal olika sensorer, såsom radarer, fast uppsatta och luftburna videokameror, mikrofoner som lyssnar efter djurläten och även vittnesmål från parkvakterna. All insamlad information bidrar till att skapa en helhetsbild av situationen i nationalparken om den används rätt. Ishantering är ett viktigt område för oljeindustrin för att garantera säkerhet och undvika allvarliga olyckor. Målet är att upptäcka och spåra is som flyter i havet och om nödvändigt vidta åtgärder för att undvika kollision. Målet är att i förlängningen sätta upp ett stort nätverk av olika sensorer och databaser för att få en heltäckande bild av det aktuella läget. Flera källor diskuteras, såsom mark- och fartygsradarer av olika slag, satelliter, drönare med kameror och väderdatabaser. Att skapa fullständiga och användbara lösningar för biologer, parkvakter och oljeindustrin är väldigt ambitiösa mål. I avhandlingen presenteras bakomliggande teori för målföljning varvat med författarens egna forskningsbidrag och lösningar för en handfull specifika problem och tillämpningar. Det första projektet som presenteras är ett samarbete med Kolmårdens djurpark. Biologer i djurparken studerar delfiners beteende i fångenskap. I dagsläget markerar studenter för hand i video var delfinerna befinner sig i bassängen. Med målföljning samlas djurens positioner in automatiskt utan mänsklig inblandning. Det främsta bidraget i forskningen är utvecklingen av en modell för hur delfinerna rör sig i bassängen. Det andra projektet som presenteras är ett samarbete med biologer vid Lunds universitet som studerar beteendet hos flyttfåglar. I en metod från 60-talet mäts fåglars rörelser i en tratt. Från repor i tratten som orsakats vid fåglarnas lyftförsök analyserar man riktningarna för lyftförsöken. Med videokamera och målföljning samlas djurens positioner in och enskilda lyftförsök detekteras automatiskt. Det främsta bidraget i forskningen är en metod för att bättre utnyttja information från videon till att detektera lyftförsöken. Det tredje projektet som presenteras är ett samarbete med Smarta Savanner. En idé som utforskas är möjligheten att använda parkvakternas vittnesmål om spår från noshörningar för att förbättra målföljningen. Å ena sidan är data från videokameror och radarer väldigt noggranna i tid, men relativt osäkra i de uppmätta positionerna. Å andra sidan kan positionen för ett spår mätas noggrant samtidigt som det ofta är svårt att avgöra när noshörningen var på platsen. Genom att utnyttja informationen från båda källorna kan noshörningars förflyttningar i parken kartläggas bättre. Den bakomliggande teorin för observationer med osäker tid inom målföljning är relativt outforskad. Det främsta bidraget i forskningen är utvecklingen av en metod för att utnyttja sådana observationer. Enkla simulerade fall används för att analysera metoden. Metoden utvärderas även i en tillämpning för att förbättra den satellitbaserade positionsbestämningen av en orienterare genom att noggrant mäta positionen på kontrollerna. Det fjärde projektet som presenteras är ett samarbete med Norges teknisk-naturvitenskapelige universitet (NTNU) och Norut i Norge som samlat in radardata på Svalbard. Det främsta bidraget är utvecklandet av en metod som lär sig hur lokala strömmar och vindar påverkar drivisen för att bättre kunna förutspå rörelser.Ett annat bidrag i forskningen är en förenkling av formuleringen och implementationen av en modern algoritm för målföljning. Projekten, som alla har flera likheter och skillnader med varandra, kan gemensamt sammanfattas med att de spårar rörelser, eller vandringar, i naturen.


Inverse system identification with applications in predistortion

Inverse system identification with applications in predistortion

Author: Ylva Jung

Publisher: Linköping University Electronic Press

Published: 2018-12-19

Total Pages: 224

ISBN-13: 9176851710

DOWNLOAD EBOOK

Models are commonly used to simulate events and processes, and can be constructed from measured data using system identification. The common way is to model the system from input to output, but in this thesis we want to obtain the inverse of the system. Power amplifiers (PAs) used in communication devices can be nonlinear, and this causes interference in adjacent transmitting channels. A prefilter, called predistorter, can be used to invert the effects of the PA, such that the combination of predistorter and PA reconstructs an amplified version of the input signal. In this thesis, the predistortion problem has been investigated for outphasing power amplifiers, where the input signal is decomposed into two branches that are amplified separately by highly efficient nonlinear amplifiers and then recombined. We have formulated a model structure describing the imperfections in an outphasing abbrPA and the matching ideal predistorter. The predistorter can be estimated from measured data in different ways. Here, the initially nonconvex optimization problem has been developed into a convex problem. The predistorters have been evaluated in measurements. The goal with the inverse models in this thesis is to use them in cascade with the systems to reconstruct the original input. It is shown that the problems of identifying a model of a preinverse and a postinverse are fundamentally different. It turns out that the true inverse is not necessarily the best one when noise is present, and that other models and structures can lead to better inversion results. To construct a predistorter (for a PA, for example), a model of the inverse is used, and different methods can be used for the estimation. One common method is to estimate a postinverse, and then using it as a preinverse, making it straightforward to try out different model structures. Another is to construct a model of the system and then use it to estimate a preinverse in a second step. This method identifies the inverse in the setup it will be used, but leads to a complicated optimization problem. A third option is to model the forward system and then invert it. This method can be understood using standard identification theory in contrast to the ones above, but the model is tuned for the forward system, not the inverse. Models obtained using the various methods capture different properties of the system, and a more detailed analysis of the methods is presented for linear time-invariant systems and linear approximations of block-oriented systems. The theory is also illustrated in examples. When a preinverse is used, the input to the system will be changed, and typically the input data will be different than the original input. This is why the estimation of preinverses is more complicated than for postinverses, and one set of experimental data is not enough. Here, we have shown that identifying a preinverse in series with the system in repeated experiments can improve the inversion performance.