Uncertainty Quantification in Computational Fluid Dynamics

Uncertainty Quantification in Computational Fluid Dynamics

Author: Hester Bijl

Publisher: Springer Science & Business Media

Published: 2013-09-20

Total Pages: 347

ISBN-13: 3319008854

DOWNLOAD EBOOK

Fluid flows are characterized by uncertain inputs such as random initial data, material and flux coefficients, and boundary conditions. The current volume addresses the pertinent issue of efficiently computing the flow uncertainty, given this initial randomness. It collects seven original review articles that cover improved versions of the Monte Carlo method (the so-called multi-level Monte Carlo method (MLMC)), moment-based stochastic Galerkin methods and modified versions of the stochastic collocation methods that use adaptive stencil selection of the ENO-WENO type in both physical and stochastic space. The methods are also complemented by concrete applications such as flows around aerofoils and rockets, problems of aeroelasticity (fluid-structure interactions), and shallow water flows for propagating water waves. The wealth of numerical examples provide evidence on the suitability of each proposed method as well as comparisons of different approaches.


High Performance Computing in Science and Engineering '19

High Performance Computing in Science and Engineering '19

Author: Wolfgang E. Nagel

Publisher: Springer Nature

Published: 2021-05-29

Total Pages: 583

ISBN-13: 3030667928

DOWNLOAD EBOOK

This book presents the state-of-the-art in supercomputer simulation. It includes the latest findings from leading researchers using systems from the High Performance Computing Center Stuttgart (HLRS) in 2019. The reports cover all fields of computational science and engineering ranging from CFD to computational physics and from chemistry to computer science with a special emphasis on industrially relevant applications. Presenting findings of one of Europe’s leading systems, this volume covers a wide variety of applications that deliver a high level of sustained performance. The book covers the main methods in high-performance computing. Its outstanding results in achieving the best performance for production codes are of particular interest for both scientists and engineers. The book comes with a wealth of color illustrations and tables of results.


Uncertainty Quantification in Computational Fluid Dynamics and Aircraft Engines

Uncertainty Quantification in Computational Fluid Dynamics and Aircraft Engines

Author: Francesco Montomoli

Publisher: Springer

Published: 2018-06-21

Total Pages: 204

ISBN-13: 3319929437

DOWNLOAD EBOOK

This book introduces design techniques developed to increase the safety of aircraft engines, and demonstrates how the application of stochastic methods can overcome problems in the accurate prediction of engine lift caused by manufacturing error. This in turn addresses the issue of achieving required safety margins when hampered by limits in current design and manufacturing methods. The authors show that avoiding the potential catastrophe generated by the failure of an aircraft engine relies on the prediction of the correct behaviour of microscopic imperfections. This book shows how to quantify the possibility of such failure, and that it is possible to design components that are inherently less risky and more reliable. This new, updated and significantly expanded edition gives an introduction to engine reliability and safety to contextualise this important issue, evaluates newly-proposed methods for uncertainty quantification as applied to jet engines. Uncertainty Quantification in Computational Fluid Dynamics and Aircraft Engines will be of use to gas turbine manufacturers and designers as well as CFD practitioners, specialists and researchers. Graduate and final year undergraduate students in aerospace or mathematical engineering may also find it of interest.


Mastering Computational Fluid Dynamics

Mastering Computational Fluid Dynamics

Author: Cybellium

Publisher: Cybellium

Published:

Total Pages: 224

ISBN-13: 1836791267

DOWNLOAD EBOOK

Welcome to the forefront of knowledge with Cybellium, your trusted partner in mastering the cutting-edge fields of IT, Artificial Intelligence, Cyber Security, Business, Economics and Science. Designed for professionals, students, and enthusiasts alike, our comprehensive books empower you to stay ahead in a rapidly evolving digital world. * Expert Insights: Our books provide deep, actionable insights that bridge the gap between theory and practical application. * Up-to-Date Content: Stay current with the latest advancements, trends, and best practices in IT, Al, Cybersecurity, Business, Economics and Science. Each guide is regularly updated to reflect the newest developments and challenges. * Comprehensive Coverage: Whether you're a beginner or an advanced learner, Cybellium books cover a wide range of topics, from foundational principles to specialized knowledge, tailored to your level of expertise. Become part of a global network of learners and professionals who trust Cybellium to guide their educational journey. www.cybellium.com


Spectral Methods for Uncertainty Quantification

Spectral Methods for Uncertainty Quantification

Author: Olivier Le Maitre

Publisher: Springer Science & Business Media

Published: 2010-03-11

Total Pages: 542

ISBN-13: 9048135206

DOWNLOAD EBOOK

This book deals with the application of spectral methods to problems of uncertainty propagation and quanti?cation in model-based computations. It speci?cally focuses on computational and algorithmic features of these methods which are most useful in dealing with models based on partial differential equations, with special att- tion to models arising in simulations of ?uid ?ows. Implementations are illustrated through applications to elementary problems, as well as more elaborate examples selected from the authors’ interests in incompressible vortex-dominated ?ows and compressible ?ows at low Mach numbers. Spectral stochastic methods are probabilistic in nature, and are consequently rooted in the rich mathematical foundation associated with probability and measure spaces. Despite the authors’ fascination with this foundation, the discussion only - ludes to those theoretical aspects needed to set the stage for subsequent applications. The book is authored by practitioners, and is primarily intended for researchers or graduate students in computational mathematics, physics, or ?uid dynamics. The book assumes familiarity with elementary methods for the numerical solution of time-dependent, partial differential equations; prior experience with spectral me- ods is naturally helpful though not essential. Full appreciation of elaborate examples in computational ?uid dynamics (CFD) would require familiarity with key, and in some cases delicate, features of the associated numerical methods. Besides these shortcomings, our aim is to treat algorithmic and computational aspects of spectral stochastic methods with details suf?cient to address and reconstruct all but those highly elaborate examples.


High Performance Computing

High Performance Computing

Author: Heike Jagode

Publisher: Springer Nature

Published: 2020-10-19

Total Pages: 382

ISBN-13: 3030598519

DOWNLOAD EBOOK

This book constitutes the refereed post-conference proceedings of 10 workshops held at the 35th International ISC High Performance 2020 Conference, in Frankfurt, Germany, in June 2020: First Workshop on Compiler-assisted Correctness Checking and Performance Optimization for HPC (C3PO); First International Workshop on the Application of Machine Learning Techniques to Computational Fluid Dynamics Simulations and Analysis (CFDML); HPC I/O in the Data Center Workshop (HPC-IODC); First Workshop \Machine Learning on HPC Systems" (MLHPCS); First International Workshop on Monitoring and Data Analytics (MODA); 15th Workshop on Virtualization in High-Performance Cloud Computing (VHPC). The 25 full papers included in this volume were carefully reviewed and selected. They cover all aspects of research, development, and application of large-scale, high performance experimental and commercial systems. Topics include high-performance computing (HPC), computer architecture and hardware, programming models, system software, performance analysis and modeling, compiler analysis and optimization techniques, software sustainability, scientific applications, deep learning.


Aggregation and Simulation Techniques

Aggregation and Simulation Techniques

Author: Dr. Bashir Eissa Mohammad Abedrahaman

Publisher: IPR Journals and Book Publishers

Published: 2023-06-10

Total Pages: 175

ISBN-13: 9914728413

DOWNLOAD EBOOK

TOPICS IN THE BOOK Inverse Spectral Properties for Symmetric Operators with Weyl Functions Homogeneous Operators and Weighted Shift with Multipliers Modeling of Natural Turbulent Convection in an Enclosure with Localized Heating Modelling Energy Market Volatility Using Garch Models and Estimating Value-at-Risk Risk Factors Associated with Stunting and Wasting Levels among Under Five Children in Ethiopia Mathematical Application of Revised Simplex Modelling in Optimal Loan Portfolio