Ultrasound in Medicine is a broad-ranging study of medical ultrasound, including ultrasound propagation, interaction with tissue, and innovations in the application of ultrasound in medicine. The book focuses specifically on the science and technology-the underlying physics and engineering. It examines the most closely related aspects of these basic sciences in clinical application and reviews the success of technological innovations in improving medical diagnosis and treatment. The book bridges the gap between tutorial texts widely available for ultrasound and medical training and theoretical works on acoustics.
This open access book gives a complete and comprehensive introduction to the fields of medical imaging systems, as designed for a broad range of applications. The authors of the book first explain the foundations of system theory and image processing, before highlighting several modalities in a dedicated chapter. The initial focus is on modalities that are closely related to traditional camera systems such as endoscopy and microscopy. This is followed by more complex image formation processes: magnetic resonance imaging, X-ray projection imaging, computed tomography, X-ray phase-contrast imaging, nuclear imaging, ultrasound, and optical coherence tomography.
Compact, hand-carried ultrasound devices are revolutionizing how healthcare providers practice medicine in nearly every specialty. The 2nd Edition of this BMA-award-winning text features all-new chapters, a greatly expanded video library, and new review questions to keep you fully up to date with the latest technology and its applications. - Helps you interpret findings with a peer-reviewed, online video library with more than 1,000 ultrasound videos of normal and pathologic findings. These videos are complemented by anatomical illustrations and text descriptions to maximize learning. - Offers new online resources, including over 60 clinical cases and review questions in every chapter. - Features fully updated content throughout, plus all-new chapters on hemodynamics, transesophageal echocardiography, transcranial Doppler ultrasound, pediatrics, neonatology, and 2nd/3rd trimester pregnancy. - Shares the knowledge and expertise of expert contributors who are internationally recognized faculty from more than 60 institutions. - Recipient of British Medical Association's President's Choice Award and Highly Commended in Internal Medicine at the BMA Medical Book Awards 2015 (first edition).
Fundamentals of Medical Imaging, second edition, is an invaluable technical introduction to each imaging modality, explaining the mathematical and physical principles and giving a clear understanding of how images are obtained and interpreted. Individual chapters cover each imaging modality – radiography, CT, MRI, nuclear medicine and ultrasound – reviewing the physics of the signal and its interaction with tissue, the image formation or reconstruction process, a discussion of image quality and equipment, clinical applications and biological effects and safety issues. Subsequent chapters review image analysis and visualization for diagnosis, treatment and surgery. New to this edition: • Appendix of questions and answers • New chapter on 3D image visualization • Advanced mathematical formulae in separate text boxes • Ancillary website containing 3D animations: www.cambridge.org/suetens • Full colour illustrations throughout Engineers, clinicians, mathematicians and physicists will find this an invaluable aid in understanding the physical principles of imaging and their clinical applications.
Diagnostic Ultrasound Imaging provides a unified description of the physical principles of ultrasound imaging, signal processing, systems and measurements. This comprehensive reference is a core resource for both graduate students and engineers in medical ultrasound research and design. With continuing rapid technological development of ultrasound in medical diagnosis, it is a critical subject for biomedical engineers, clinical and healthcare engineers and practitioners, medical physicists, and related professionals in the fields of signal and image processing. The book contains 17 new and updated chapters covering the fundamentals and latest advances in the area, and includes four appendices, 450 figures (60 available in color on the companion website), and almost 1,500 references. In addition to the continual influx of readers entering the field of ultrasound worldwide who need the broad grounding in the core technologies of ultrasound, this book provides those already working in these areas with clear and comprehensive expositions of these key new topics as well as introductions to state-of-the-art innovations in this field. - Enables practicing engineers, students and clinical professionals to understand the essential physics and signal processing techniques behind modern imaging systems as well as introducing the latest developments that will shape medical ultrasound in the future - Suitable for both newcomers and experienced readers, the practical, progressively organized applied approach is supported by hands-on MATLAB® code and worked examples that enable readers to understand the principles underlying diagnostic and therapeutic ultrasound - Covers the new important developments in the use of medical ultrasound: elastography and high-intensity therapeutic ultrasound. Many new developments are comprehensively reviewed and explained, including aberration correction, acoustic measurements, acoustic radiation force imaging, alternate imaging architectures, bioeffects: diagnostic to therapeutic, Fourier transform imaging, multimode imaging, plane wave compounding, research platforms, synthetic aperture, vector Doppler, transient shear wave elastography, ultrafast imaging and Doppler, functional ultrasound and viscoelastic models
This text provides readers with the background needed to use ultrasound most effectively in critical situations. It explains basic principles, primary and secondary applications, and interpretation.
The physical properties of ultrasound, particularly its highly directional beam behaviour, and its complex interactions with human tissues, have led to its becoming a vitally important tool in both investigative and interventional medicine, and one that still has much exciting potential. This new edition of a well-received book treats the phenomenon of ultrasound in the context of medical and biological applications, systematically discussing fundamental physical principles and concepts. Rather than focusing on earlier treatments, based largely on the simplifications of geometrical acoustics, this book examines concepts of wave acoustics, introducing them in the very first chapter. Practical implications of these concepts are explored, first the generation and nature of acoustic fields, and then their formal descriptions and measurement. Real tissues attenuate and scatter ultrasound in ways that have interesting relationships to their physical chemistry, and the book includes coverage of these topics. Physical Principles of Medical Ultrasonics also includes critical accounts and discussions of the wide variety of diagnostic and investigative applications of ultrasound that are now becoming available in medicine and biology. The book also encompasses the biophysics of ultrasound, its practical applications to therapeutic and surgical objectives, and its implications in questions of hazards to both patient and operator.
Forlagets beskrivelse: The World Health Organization (WHO) recognizes ultrasound as an important medical diagnostic imaging technology. Manuals on ultrasound have been published by WHO since 2001, with the purpose of guiding health professionals on the safe and effective use of ultrasound. Among the diagnostic imaging technologies, ultrasound is the safer and least expensive, and technological advances are making it more user friendly and portable. Ultrasound has many uses, both diagnostic and therapeutic. For the purposes of this manual, only diagnostic ultrasound will be considered and further analysed. Basic physics of ultrasonographic imaging was released in 2005; since then, WHO has addressed the physics, safe use and different applications of ultrasound as an important diagnostic imaging tool. Since it is a non ionizing radiation technology, along with nuclear magnetic resonance imaging, the risks inherent to its use are lower than those presented by other diagnostic imaging technologies using ionizing radiation, such as the radiological technologies (X-rays and computed tomography scanners).
Foundations of Biomedical Ultrasound provides a thorough and detailed treatment of the underlying physics and engineering of medical ultrasound practices. It covers the fundamental engineering behind ultrasound equipment, properties of acoustic wave motion, the behavior of waves in various media, non-linear waves and the creation of images. The most comprehensive book on the subject, Foundations of Biomedical Ultrasound is an indispensable reference for any medical professional working with ultrasound imaging, and a comprehensive introduction to the subject for students. The author has been researching and teaching biomedical ultrasonics at the University of Toronto for the past 25 years.
Master high-yield point-of-care ultrasound applications that are targeted specifically to answer questions that arise commonly in the outpatient clinic! Written for primary care providers in Family Medicine, Pediatrics and Internal Medicine, Ultrasound for Primary Care is a practical, easy-to-read guide. Learn to incorporate ultrasound to augment your physical exam for evaluation of thyroid nodules, enlarged lymph nodes, pericardial effusion, chronic kidney disease, and a host of musculoskeletal issues, and much more. Additionally, included are chapters on ultrasound for guidance of procedures including joint injections, lumbar puncture and needle biopsy, to name a few. Well-illustrated and highly templated, this unique title helps you expand the scope of your practice and provide more effective patient care. This is the tablet version which does not include access to the supplemental content mentioned in the text.