Ultrashort Processes in Condensed Matter

Ultrashort Processes in Condensed Matter

Author: Walter E. Bron

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 398

ISBN-13: 1461529549

DOWNLOAD EBOOK

The Advanced Study Institute (AS!) considered a number offacets of the very rapidly advancing field of theoretical and experimental aspects of ultrashort processes in condensed matter. Common threads exist between a series of example cases. One major subgroup of topics involves the ultrashort dynamics of excitations of various "particles" produced through the interactions of condensed matter with ultrashort duration laser light. Examples ofthe excitations include electronic and hole carriers, electron-hole plasma, phonons, vibrons and rotons, two phonon states, and excitons. Experimentation on the dynamics of such excitations, are carried out in the bulk, at surfaces, in thin films, and in quantum wells. The dynamical steps which the excitations usually undergo include photo-excitation, local thermalization, particle-particle interaction, particle phonon interactions and eventual return to true thermal equilibrium. This ASI was organized to benefit particularly advanced graduate students, specifically, those near the end of their Ph.D. thesis projects, and also for postdoctoral scholars already active in the field. The overall organizational goal was centered around a set oftutorially based lectures intermingled with full scale discussion periods of equal time and importance as the lectures. The general discussion periods were designed to offer to the participants ample time to ask detailed questions and to make comments and contributions of their own. In order to complete the involvement of the participants a full length poster session was also held. A representative set of abstracts of these posters appear as an Appendix to the lectures.


Ultrafast Spectroscopy of Semiconductors and Semiconductor Nanostructures

Ultrafast Spectroscopy of Semiconductors and Semiconductor Nanostructures

Author: Jagdeep Shah

Publisher: Springer Science & Business Media

Published: 2013-11-21

Total Pages: 536

ISBN-13: 366203770X

DOWNLOAD EBOOK

Ultrafast spectroscopy of semiconductors and semiconductor nanostructures is currently one of the most exciting areas of research in condensed-matter physics. Remarkable recent progress in the generation of tunable femtosecond pulses has allowed direct investigation of the most fundamental dynamical processes in semiconductors. This second edition presents the most striking recent advances in the techniques of ultrashort pulse generation and ultrafast spectroscopy; it discusses the physics of relaxation, tunneling and transport dynamics in semiconductors and semiconductor nanostructures following excitation by femtosecond laser pulses.


Semiconductor Optics

Semiconductor Optics

Author: Claus F. Klingshirn

Publisher: Springer Science & Business Media

Published: 1997-02-03

Total Pages: 514

ISBN-13: 354061687X

DOWNLOAD EBOOK

Semiconductor Optics provides an introduction to and an overview of semiconductor optics from the IR through the visible to the UV, including linear and nonlinear optical properties, dynamics, magneto- and electrooptics, high-excitation effects, some applications, experimental techniques and group theory. Mathematics is kept as elementary as possible, enough for an intuitive understanding of the experimental results and techniques treated. The subjects covered extend from physics to materials science and optoelectronics.


Ultrafast Dynamics Driven by Intense Light Pulses

Ultrafast Dynamics Driven by Intense Light Pulses

Author: Markus Kitzler

Publisher: Springer

Published: 2015-07-24

Total Pages: 385

ISBN-13: 3319201735

DOWNLOAD EBOOK

This book documents the recent vivid developments in the research field of ultrashort intense light pulses for probing and controlling ultrafast dynamics. The recent fascinating results in studying and controlling ultrafast dynamics in ever more complicated systems such as (bio-)molecules and structures of meso- to macroscopic sizes on ever shorter time-scales are presented. The book is written by some of the most eminent experimental and theoretical experts in the field. It covers the new groundbreaking research directions that were opened by the availability of new light sources such as fully controlled intense laser fields with durations down to a single oscillation cycle, short-wavelength laser-driven attosecond pulses and intense X-ray pulses from the upcoming free electron lasers. These light sources allowed the investigation of dynamics in atoms, molecules, clusters, on surfaces and very recently also in nanostructures and solids in new regimes of parameters which, in turn, led to the identification of completely new dynamics and methods for controlling it. Example topics covered by this book include the study of ultrafast processes in large molecules using attosecond pulses, control of ultrafast electron dynamics in solids with shaped femtosecond laser pulses, light-driven ultrafast plasmonic processes on surfaces and in nanostructures as well as research on atomic and molecular systems under intense X-ray radiation. This book is equally helpful for people who would like to step into this field (e.g. young researchers), for whom it provides a broad introduction, as well as for already experienced researchers who may enjoy the exhaustive discussion that covers the research on essentially all currently studied objects and with all available ultrafast pulse sources.


World Scientific Handbook Of Metamaterials And Plasmonics (In 4 Volumes)

World Scientific Handbook Of Metamaterials And Plasmonics (In 4 Volumes)

Author: Stefan A Maier

Publisher: World Scientific

Published: 2017-10-12

Total Pages: 2001

ISBN-13: 9813228741

DOWNLOAD EBOOK

Metamaterials represent a new emerging innovative field of research which has shown rapid acceleration over the last couple of years. In this handbook, we present the richness of the field of metamaterials in its widest sense, describing artificial media with sub-wavelength structure for control over wave propagation in four volumes.Volume 1 focuses on the fundamentals of electromagnetic metamaterials in all their richness, including metasurfaces and hyperbolic metamaterials. Volume 2 widens the picture to include elastic, acoustic, and seismic systems, whereas Volume 3 presents nonlinear and active photonic metamaterials. Finally, Volume 4 includes recent progress in the field of nanoplasmonics, used extensively for the tailoring of the unit cell response of photonic metamaterials.In its totality, we hope that this handbook will be useful for a wide spectrum of readers, from students to active researchers in industry, as well as teachers of advanced courses on wave propagation.


Super-Intense Laser—Atom Physics

Super-Intense Laser—Atom Physics

Author: A. L'Huillier

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 494

ISBN-13: 1461579635

DOWNLOAD EBOOK

The rapid development of powerful pulsed lasers is at the origin of a conside rable interest in studying the response of an atom, a molecule (or a solid) to a strong electromagnetic field. It is now possible to produce at the laboratory scale, ultra-short 13 pulses with a duration of 100 femtoseconds (10- second) and a power of the order 12 of 1 terawatt (10 Watt). Under these conditions, very high peak intensities may be obtained and electric fields exceeding typical electron binding fields in atoms are generated. The interaction of an atom or a molecule with such electromagnetic fields has a highly non-linear character which leads to unexpected phenomena. Amongst them, - above-threshold ionization (ATI) i.e. the absorption of additional photons in excess of the minimal number necessary to overcome the ionization potential and its molecular counterpart, above-threshold dissociation (ATD); - generation of very high harmonics of the driving field; - stabilization of one-electron systems in strong fields. These processes were the main topics of two international meetings which were held in 1989 and 1991 in the United States under the common name SILAP (Super-Intense Laser-Atom Physics).


Light Localisation and Lasing

Light Localisation and Lasing

Author: Mher Ghulinyan

Publisher: Cambridge University Press

Published: 2015

Total Pages: 261

ISBN-13: 1107038774

DOWNLOAD EBOOK

This book presents research on quasi-random and random photonic systems for graduate students and researchers in optics, photonics and optical engineering.


Low-Dimensional Topology and Quantum Field Theory

Low-Dimensional Topology and Quantum Field Theory

Author: Hugh Osborn

Publisher: Springer Science & Business Media

Published: 2013-11-11

Total Pages: 318

ISBN-13: 1489916121

DOWNLOAD EBOOK

The motivations, goals and general culture of theoretical physics and mathematics are different. Most practitioners of either discipline have no necessity for most of the time to keep abreast of the latest developments in the other. However on occasion newly developed mathematical concepts become relevant in theoretical physics and the less rigorous theoretical physics framework may prove valuable in understanding and suggesting new theorems and approaches in pure mathematics. Such interdis ciplinary successes invariably cause much rejoicing, as over a prodigal son returned. In recent years the framework provided by quantum field theory and functional in tegrals, developed over half a century in theoretical physics, have proved a fertile soil for developments in low dimensional topology and especially knot theory. Given this background it was particularly pleasing that NATO was able to generously sup port an Advanced Research Workshop to be held in Cambridge, England from 6th to 12th September 1992 with the title Low Dimensional Topology and Quantum Field Theory. Although independently organised this overlapped as far as some speak ers were concerned with a longer term programme with the same title organised by Professor M Green, Professor E Corrigan and Dr R Lickorish. The contents of this proceedings of the workshop demonstrate the breadth of topics now of interest on the interface between theoretical physics and mathematics as well as the sophistication of the mathematical tools required in current theoretical physics.


Lectures On The Non-equilibrium Theory Of Condensed Matter (Second Edition)

Lectures On The Non-equilibrium Theory Of Condensed Matter (Second Edition)

Author: Ladislaus Alexander Banyai

Publisher: World Scientific

Published: 2020-07-30

Total Pages: 283

ISBN-13: 9811223823

DOWNLOAD EBOOK

This book discusses in depth many of the key problems in non-equilibrium physics. Besides the standard subjects (Boltzmann and Master equations, linear response) it includes several new important subjects as well. The origin of macroscopic irreversible (dissipative) behavior receives an extended attention and is illustrated in the framework of solvable classical models of open systems (Chapter 3). The scaling relationship between the kinetic and hydrodynamical levels is described in Chapter 9. The QED of charged non-relativistic particles and its restriction to the states without photons to order 1/c² leading to the current-current magnetic interaction is discussed in some depth in Chapters 14 and 15. Bose-Einstein condensation in real time within the frame of rate equations, as well as soliton-like solutions of the non-linear Gross-Pitaevskii equation are discussed in Chapter 22. The presentation also includes the latest developments — quantum kinetics — related to modern ultrafast spectroscopy (Chapters 23-30).This second edition was improved, restructured, and enriched with new results from the recent papers of the author. Chapter 3 was largely extended and Chapters 14 and 15 are completely new. Chapter 22 has a new Section. Several new useful figures were added throughout the book as well.


Ultrashort Pulse Lasers and Ultrafast Phenomena

Ultrashort Pulse Lasers and Ultrafast Phenomena

Author: Takayoshi Kobayashi

Publisher: CRC Press

Published: 2023-03-21

Total Pages: 708

ISBN-13: 0429591721

DOWNLOAD EBOOK

This book describes the basic physical principles of techniques to generate and ultrashort pulse lasers and applications to ultrafast spectroscopy of various materials covering chemical molecular compounds, solid-state materials, exotic novel materials including topological materials, biological molecules and bio- and synthetic polymers. It introduces non-linear optics which provides the basics of generation and measurement of pulses and application examples of ultrafast spectroscopy to solid state physics. Also it provide not only material properties but also material processing procedures. The book describes also details of the world shortest visible laser and DUV lasers developed by the author’s group. It is composed of the following 12 Sections: The special features of this book is that it is written by a single author with a few collaborators in a systematic way. Hence it provides a comprehensive and systematic description of the research field of ultrashort pulse lasers and ultrafast spectroscopy. Generation of ultrashort pulses in deep ultraviolet to near infrared Generation of ultrashort pulses in terahertz Carrier envelope phase (CEP) Simple NLO processes with a few colors Multi-color involved NLO processes Multi-color ultrashort pulse generation NLO materials NLO processes in time-resolved spectroscopy Low dimension materials Conductors and superconductors Chemical reactions and material processing Photobiological reactions