Ultra-High Temperature Materials I

Ultra-High Temperature Materials I

Author: Igor L. Shabalin

Publisher: Springer

Published: 2014-05-16

Total Pages: 800

ISBN-13: 9400775873

DOWNLOAD EBOOK

This exhaustive work in three volumes with featuring cross-reference system provides a thorough overview of ultra-high temperature materials – from elements and chemical compounds to alloys and composites. Topics included are physical (crystallographic, thermodynamic, thermo-physical, electrical, optical, physico-mechanical, nuclear) and chemical (solid-state diffusion, interaction with chemical elements and compounds, interaction with gases, vapours and aqueous solutions) properties of the individual physico-chemical phases and multi-phase materials with melting (or sublimation) points over or about 2500 °C. The first volume focuses on carbon (graphite/graphene) and refractory metals (W, Re, Os, Ta, Mo, Nb, Ir). The second and third volumes are dedicated solely to refractory (ceramic) compounds (oxides, nitrides, carbides, borides, silicides) and to the complex materials – refractory alloys, carbon and ceramic composites, respectively. It will be of interest to researchers, engineers, postgraduate, graduate and undergraduate students in various disciplines alike. The reader is provided with the full qualitative and quantitative assessment for the materials, which could be applied in various engineering devices and environmental conditions at ultra-high temperatures, on the basis of the latest updates in the field of physics, chemistry, materials science, nanotechnology and engineering.


Ultra-High Temperature Ceramics

Ultra-High Temperature Ceramics

Author: William G. Fahrenholtz

Publisher: John Wiley & Sons

Published: 2014-10-10

Total Pages: 601

ISBN-13: 111892441X

DOWNLOAD EBOOK

The first comprehensive book to focus on ultra-high temperature ceramic materials in more than 20 years Ultra-High Temperature Ceramics are a family of compounds that display an unusual combination of properties, including extremely high melting temperatures (>3000°C), high hardness, and good chemical stability and strength at high temperatures. Typical UHTC materials are the carbides, nitrides, and borides of transition metals, but the Group IV compounds (Ti, Zr, Hf) plus TaC are generally considered to be the main focus of research due to the superior melting temperatures and stable high-melting temperature oxide that forms in situ. Rather than focusing on the latest scientific results, Ultra-High Temperature Ceramics: Materials for Extreme Environment Applications broadly and critically combines the historical aspects and the state-of-the-art on the processing, densification, properties, and performance of boride and carbide ceramics. In reviewing the historic studies and recent progress in the field, Ultra-High Temperature Ceramics: Materials for Extreme Environment Applications provides: Original reviews of research conducted in the 1960s and 70s Content on electronic structure, synthesis, powder processing, densification, property measurement, and characterization of boride and carbide ceramics. Emphasis on materials for hypersonic aerospace applications such as wing leading edges and propulsion components for vehicles traveling faster than Mach 5 Information on materials used in the extreme environments associated with high speed cutting tools and nuclear power generation Contributions are based on presentations by leading research groups at the conference "Ultra-High Temperature Ceramics: Materials for Extreme Environment Applications II" held May 13-19, 2012 in Hernstein, Austria. Bringing together disparate researchers from academia, government, and industry in a singular forum, the meeting cultivated didactic discussions and efforts between bench researchers, designers and engineers in assaying results in a broader context and moving the technology forward toward near- and long-term use. This book is useful for furnace manufacturers, aerospace manufacturers that may be pursuing hypersonic technology, researchers studying any aspect of boride and carbide ceramics, and practitioners of high-temperature structural ceramics.


Ultra-High Temperature Materials II

Ultra-High Temperature Materials II

Author: Igor L. Shabalin

Publisher: Springer

Published: 2019-04-24

Total Pages: 764

ISBN-13: 9402413022

DOWNLOAD EBOOK

This exhaustive work in three volumes and over 1300 pages provides a thorough treatment of ultra-high temperature materials with melting points over 2500 °C. The first volume focuses on Carbon and Refractory Metals, whilst the second and third are dedicated solely to Refractory compounds and the third to Refractory Alloys and Composites respectively. Topics included are physical (crystallographic, thermodynamic, thermo physical, electrical, optical, physico-mechanical, nuclear) and chemical (solid-state diffusion, interaction with chemical elements and compounds, interaction with gases, vapours and aqueous solutions) properties of the individual physico-chemical phases of carbon (graphite/graphene), refractory metals (W, Re, Os, Ta, Mo, Nb, Ir) and compounds (oxides, nitrides, carbides, borides, silicides) with melting points in this range. It will be of interest to researchers, engineers, postgraduate, graduate and undergraduate students alike. The reader is provided with the full qualitative and quantitative assessment for the materials, which could be applied in various engineering devices and environmental conditions at ultra-high temperatures, on the basis of the latest updates in the field of physics, chemistry, materials science and engineering.


Ultra-High Temperature Thermal Energy Storage, Transfer and Conversion

Ultra-High Temperature Thermal Energy Storage, Transfer and Conversion

Author: Alejandro Datas

Publisher: Woodhead Publishing

Published: 2020-09-01

Total Pages: 370

ISBN-13: 0128204214

DOWNLOAD EBOOK

Ultra-High Temperature Thermal Energy Storage, Transfer and Conversion presents a comprehensive analysis of thermal energy storage systems operating at beyond 800°C. Editor Dr. Alejandro Datas and his team of expert contributors from a variety of regions summarize the main technological options and the most relevant materials and characterization considerations to enable the reader to make the most effective and efficient decisions.This book helps the reader to solve the very specific challenges associated with working within an ultra-high temperature energy storage setting. It condenses and summarizes the latest knowledge, covering fundamentals, device design, materials selection and applications, as well as thermodynamic cycles and solid-state devices for ultra-high temperature energy conversion.This book provides a comprehensive and multidisciplinary guide to engineers and researchers in a variety of fields including energy conversion, storage, cogeneration, thermodynamics, numerical methods, CSP, and materials engineering. It firstly provides a review of fundamental concepts before exploring numerical methods for fluid-dynamics and phase change materials, before presenting more complex elements such as heat transfer fluids, thermal insulation, thermodynamic cycles, and a variety of energy conversation methods including thermophotovoltaic, thermionic, and combined heat and power. - Reviews the main technologies enabling ultra-high temperature energy storage and conversion, including both thermodynamic cycles and solid-state devices - Includes the applications for ultra-high temperature energy storage systems, both in terrestrial and space environments - Analyzes the thermophysical properties and relevant experimental and theoretical methods for the analysis of high-temperature materials


MAX Phases and Ultra-high Temperature Ceramics for Extreme Environments

MAX Phases and Ultra-high Temperature Ceramics for Extreme Environments

Author: It-Meng Low

Publisher: Engineering Science Reference

Published: 2013

Total Pages: 0

ISBN-13: 9781466640665

DOWNLOAD EBOOK

"This book investigates a new class of ultra-durable ceramic materials, which exhibit characteristics of both ceramics and metals, and will explore recent advances in the manufacturing of ceramic materials that improve their durability and other physical properties, enhancing their overall usability and cost-effectiveness"--


High Temperature Materials and Mechanisms

High Temperature Materials and Mechanisms

Author: Yoseph Bar-Cohen

Publisher: CRC Press

Published: 2014-03-03

Total Pages: 586

ISBN-13: 1466566450

DOWNLOAD EBOOK

The use of high-temperature materials in current and future applications, including silicone materials for handling hot foods and metal alloys for developing high-speed aircraft and spacecraft systems, has generated a growing interest in high-temperature technologies. High Temperature Materials and Mechanisms explores a broad range of issues related to high-temperature materials and mechanisms that operate in harsh conditions. While some applications involve the use of materials at high temperatures, others require materials processed at high temperatures for use at room temperature. High-temperature materials must also be resistant to related causes of damage, such as oxidation and corrosion, which are accelerated with increased temperatures. This book examines high-temperature materials and mechanisms from many angles. It covers the topics of processes, materials characterization methods, and the nondestructive evaluation and health monitoring of high-temperature materials and structures. It describes the application of high temperature materials to actuators and sensors, sensor design challenges, as well as various high temperature materials and mechanisms applications and challenges. Utilizing the knowledge of experts in the field, the book considers the multidisciplinary nature of high temperature materials and mechanisms, and covers technology related to several areas including energy, space, aerospace, electronics, and metallurgy. Supplies extensive references at the end of each chapter to enhance further study Addresses related science and engineering disciplines Includes information on drills, actuators, sensors and more A comprehensive resource of information consolidated in one book, this text greatly benefits students in materials science, aerospace and mechanical engineering, and physics. It is also an ideal resource for professionals in the industry.


Handbook of Ceramic Composites

Handbook of Ceramic Composites

Author: Narottam P. Bansal

Publisher: Springer Science & Business Media

Published: 2006-08-25

Total Pages: 547

ISBN-13: 0387239863

DOWNLOAD EBOOK

This valuable handbook has been compiled by internationally renowned researchers in the field. Each chapter is focused on a specific composite system or a class of composites, presenting a detailed description of processing, properties, and applications.


Coatings for High-Temperature Structural Materials

Coatings for High-Temperature Structural Materials

Author: National Research Council

Publisher: National Academies Press

Published: 1996-05-13

Total Pages: 102

ISBN-13: 0309176026

DOWNLOAD EBOOK

This book assesses the state of the art of coatings materials and processes for gas-turbine blades and vanes, determines potential applications of coatings in high-temperature environments, identifies needs for improved coatings in terms of performance enhancements, design considerations, and fabrication processes, assesses durability of advanced coating systems in expected service environments, and discusses the required inspection, repair, and maintenance methods. The promising areas for research and development of materials and processes for improved coating systems and the approaches to increased coating standardization are identified, with an emphasis on materials and processes with the potential for improved performance, quality, reproducibility, or manufacturing cost reduction.


Ultra High Temperature Mechanical Testing

Ultra High Temperature Mechanical Testing

Author: R D Lohr

Publisher: Woodhead Publishing

Published: 1995-03-31

Total Pages: 248

ISBN-13:

DOWNLOAD EBOOK

The research and development of advanced materials for high-temperature applications requires special test methods, procedures and equipment. This recent book presents in-depth information on the subject prepared by leading high-temperature materials testing specialists from Europe, Japan and the U.S. The 18 illustrated reports cover key topics in the areas of equipment, theory, test design, test specimens, procedures, applications and test results interpretation and utility. A wealth of test data is included for various materials. The primary focus is on ceramic matrix composite materials. Other materials applications include intermetallics, refractories, and monolithic materials. The text includes numerous diagrams, flow charts and photographs which illustrate equipment, procedures and test specimens. The many tables and graphs provide test results and properties data for a variety of high temperature materials.


Advanced Multifunctional Lightweight Aerostructures

Advanced Multifunctional Lightweight Aerostructures

Author: Kamran Behdinan

Publisher: John Wiley & Sons

Published: 2021-01-29

Total Pages: 256

ISBN-13: 1119756723

DOWNLOAD EBOOK

Offers a review of the newest methodologies for the characterization and modelling of lightweight materials and structures Advances in Multifunctional Lightweight Structures offers a text that provides and in-depth analyses of the thermal, electrical and mechanical responses of multi-functional lightweight structures. The authors, noted experts on the topic, address the most recent and innovative methodologies for the characterization and modelling of lightweight materials and discuss various shell and plate theories. They present multifunctional materials and structures and offer detailed descriptions of the complex modelling of these structures. The text is divided into three sections that demonstrate a keen understanding and awareness for multi-functional lightweight structures by taking a unique approach. The authors explore multi-disciplinary modelling and characterization alongside benchmark problems and applications, topics that are rarely approached in this field. This important book: • Offers an analyses of the thermal, electrical and mechanical responses of multi-functional lightweight structures • Covers innovative methodologies for the characterization and modelling of lightweight materials and structures • Presents a characterization of a wide variety of novel materials • Considers multifunctional novel structures with potential applications in different high-tech industries • Includes efficient and highly accurate methodologies Written for professionals, engineers and researchers in industrial and other specialized research institutions, Advances in Multifunctional Lightweight Structures offers a much needed text to the design practices of existing engineering building services and how these methods combine with recent developments.