This book examines the use of high-pressure technology in food processing and preservation. The editors have assembled a respected list of contributors from both academia and industry to explore the fundamental aspects of this non-thermal treatment of foods, beginning with a section on the evolution of high-pressure processing. The second part of the book consists of chapters dealing with the effects of this treatment on the microbiology, food quality, and food structure of foods. The next section looks at how this processing technique affects shelf life, liquid and solid foods. Finally, the book addresses the specific processing aspects, equipment, and the regulatory issues involved with high-pressure treatment.
High pressure processing technology has been adopted worldwide at the industrial level to preserve a wide variety of food products without using heat or chemical preservatives. High Pressure Processing: Technology Principles and Applications will review the basic technology principles and process parameters that govern microbial safety and product quality, an essential requirement for industrial application. This book will be of interest to scientists in the food industry, in particular to those involved in the processing of products such as meat, fish, fruits, and vegetables. The book will be equally important to food microbiologists and processing specialists in both the government and food industry. Moreover, it will be a valuable reference for authorities involved in the import and export of high pressure treated food products. Finally, this update on the science and technology of high pressure processing will be helpful to all academic, industrial, local, and state educators in their educational efforts, as well as a great resource for graduate students interested in learning about state-of-the-art technology in food engineering.
The second edition of Emerging Technologies in Food Processing presents essential, authoritative, and complete literature and research data from the past ten years. It is a complete resource offering the latest technological innovations in food processing today, and includes vital information in research and development for the food processing industry. It covers the latest advances in non-thermal processing including high pressure, pulsed electric fields, radiofrequency, high intensity pulsed light, ultrasound, irradiation, and addresses the newest hurdles in technology where extensive research has been carried out. - Provides an extensive list of research sources to further research development - Presents current and thorough research results and critical reviews - Includes the most recent technologies used for shelf life extension, bioprocessing simulation and optimization
Preservation of Foods with Pulsed Electric Fields discusses the basics of high voltage PEF as a low temperature food processing method, and the application of this technology in food preservation. This technology is attracting a great deal of interest around the world because it is more cost effective than conventional systems due to the conservative nature of PEF. This book thoroughly covers the electrical and food engineering aspects, as well as the food science components (i.e. food microbiology, enzyme inactivation kinetics, and sensory evaluation). - Fundamentals of high intensity pulsed electric fields - Design of PEF processing equipment - Biological principles for microbial inactivation in electric fields - PEF-induced biological changes - PEF inactivation of vegetable cells, spores, and enzymes in foods - Food processing by PEF - HACCP in PEF processing - PEF in the food industry for the new millennium
During the past decade, consumer demand for convenient, fresh-like, safe, high-quality food products has grown. The food industry has responded by applying a number of new technologies including high hydrostatic pressure for food processing and preservation. In addition, food scientists have demonstrated the feasibility of industrial-scale high pressure processing. This technology is of specific interest to the food industry because it provides an attractive alternative to conventional methods of thermal processing, which often produce undesirable changes in foods and hamper the balance between high quality (color, flavor, and functionality) and safety. In addition, it offers opportunities for creating new ingredients and products because of the specific actions of high pressure on bio logical materials and food constituents. It allows food scientists to redesign exist ing processes and to create entirely new ones using high pressure technology alone or in combination with conventional processes (e. g. , pressure-temperature combinations ). Researchers have investigated high pressure processing for the past century. Scientists such as Hite and Bridgman did pioneering work at the turn of the 20th century. Then during the 1980s and 1990s, there was a large effort to investigate the effects of high pressure on biological materials, particularly foods. The initial research activities in the late 1980s and early 1990s focused on exploratory activ ities in the food area.
The first edition of Food processing technology was quickly adopted as the standard text by many food science and technology courses. This completely revised and updated third edition consolidates the position of this textbook as the best single-volume introduction to food manufacturing technologies available. This edition has been updated and extended to include the many developments that have taken place since the second edition was published. In particular, advances in microprocessor control of equipment, 'minimal' processing technologies, functional foods, developments in 'active' or 'intelligent' packaging, and storage and distribution logistics are described. Technologies that relate to cost savings, environmental improvement or enhanced product quality are highlighted. Additionally, sections in each chapter on the impact of processing on food-borne micro-organisms are included for the first time. - Introduces a range of processing techniques that are used in food manufacturing - Explains the key principles of each process, including the equipment used and the effects of processing on micro-organisms that contaminate foods - Describes post-processing operations, including packaging and distribution logistics
Sustainable Food Processing Food processors face numerous challenges from ever-changing economic, social and environmental conditions. With global inequalities increasing, ingredient costs climbing, and global climate change becoming a major political issue, food producers must now address environmental concerns, social responsibility and economic viability when shaping their food processing techniques for the future. Food production, preservation and distribution contribute to greenhouse gas emissions from the agri-food sector, therefore food producers require detailed, industrially relevant information that addresses these challenges. The food industry, as one of the world’s largest users of energy, must embrace new ways of meeting the needs of the present without compromising future viability. It is important that the industry does not merely focus on simple indicators of sustainability that are relatively easy to calculate and hold appeal for governments and the public, but which do not properly address the many dimensions of sustainability. This book provides a comprehensive overview of both economic sustainability and the environmental concerns that relate to food processing. It is divided into four sections. Part one deals with principles and assessment of sustainability in the context of food processing; Part two summarises sustainability in various food processing applications within the food industry; Part three considers sustainability in food manufacturing operations that are vital in food production systems; and Part four addresses sustainable food distribution and consumption. As the most comprehensive reference book for industry to date, this book will provide engineers, educators, researchers, policy makers and scientists working in the food industry with a valuable resource for their work.
Fruit and vegetables are both major food products in their own right and key ingredients in many processed foods. There has been growing research on their importance to health and techniques to preserve the nutritional and sensory qualities desired by consumers. This major collection summarises some of the key themes in this recent research.Part one looks at fruit, vegetables and health. There are chapters on the health benefits of increased fruit and vegetable consumption, antioxidants and improving the nutritional quality of processed fruits. Part two considers ways of managing safety and quality through the supply chain. A number of chapters discuss the production of fresh fruit and vegetables, looking at modelling, the use of HACCP systems and ways of maintaining postharvest quality. There are also two chapters on instrumentation for measuring quality. Two final chapters look at maintaining the safety and quality of processed fruit and vegetables. Part three reviews technologies to improve fruit and vegetable products. Two chapters consider how to extend the shelf-life of fruits and vegetables during cultivation. The following three chapters then consider how postharvest handling can improve quality, covering minimal processing, new modified atmosphere packaging techniques and the use of edible coatings. Two final chapters discuss two major recent technologies in processing fruit and vegetables: high pressure processing and the use of vacuum technology.With its distinguished editor and international team of contributors, Fruit and vegetable processing provides an authoritative review of key research on measuring and improving the quality of both fresh and processed fruits and vegetables. - Reviews recent research on improving the sensory, nutritional and functional qualities of fruit and vegetables, whether as fresh or processed products - Examines the importance of fruits and vegetables in processed foods and outlines techniques to preserve the nutritional and sensory qualities desired by consumers - Discusses two major technologies in processing fruits and vegetables: high pressure processing and the use of vacuum technology
This volume presents a wide range of new approaches aimed at improving the safety and quality of food products and agricultural commodities. Each chapter provides in-depth information on new and emerging food preservation techniques including those relating to decontamination, drying and dehydration, packaging innovations and the use of botanicals as natural preservatives for fresh animal and plant products. The 28 chapters, contributed by an international team of experienced researchers, are presented in five sections, covering: Novel decontamination techniques Novel preservation techniques Active and atmospheric packaging Food packaging Mathematical modelling of food preservation processes Natural preservatives This title will be of great interest to food scientists and engineers based in food manufacturing and in research establishments. It will also be useful to advanced students of food science and technology.