Beam Acceleration In Crystals And Nanostructures - Proceedings Of The Workshop

Beam Acceleration In Crystals And Nanostructures - Proceedings Of The Workshop

Author: Swapan Chattopadhyay

Publisher: World Scientific

Published: 2020-02-18

Total Pages: 269

ISBN-13: 9811217149

DOWNLOAD EBOOK

Recent advancements in generation of intense X-ray laser ultrashort pulses open opportunities for particle acceleration in solid-state plasmas. Wakefield acceleration in crystals or carbon nanotubes shows promise of unmatched ultra-high accelerating gradients and possibility to shape the future of high energy physics colliders. This book summarizes the discussions of the 'Workshop on Beam Acceleration in Crystals and Nanostructures' (Fermilab, June 24-25 , 2019), presents next steps in theory and modeling and outlines major physics and technology challenges toward proof-of-principle demonstration experiments.


Beam Acceleration In Crystals And Nanostructures - Proceedings Of The Workshop

Beam Acceleration In Crystals And Nanostructures - Proceedings Of The Workshop

Author: Gerard Mourou

Publisher:

Published: 2020

Total Pages: 269

ISBN-13: 9811217130

DOWNLOAD EBOOK

"Recent advancements in generation of intense X-ray laser ultrashort pulses open opportunities for particle acceleration in solid-state plasmas. Wakefield acceleration in crystals or carbon nanotubes shows promise of unmatched ultra-high accelerating gradients and possibility to shape the future of high energy physics colliders. This book summarizes the discussions of the "Workshop on Beam Acceleration in Crystals and Nanostructures" (Fermilab, June 24-25, 2019), presents next steps in theory and modeling and outlines major physics and technology challenges toward proof-of-principle demonstration experiments"--Publisher's website.


Geons, Black Holes, and Quantum Foam: A Life in Physics

Geons, Black Holes, and Quantum Foam: A Life in Physics

Author: John Archibald Wheeler

Publisher: W. W. Norton & Company

Published: 2010-06-18

Total Pages: 388

ISBN-13: 0393079481

DOWNLOAD EBOOK

Winner of the American Institute of Physics Science Writing Award "This delightful account is packed with insights…[Wheeler] is a consummately American physicist whose wide-ranging career spans much of a disturbing century." —Michael Riordan, New York Times Book Review He studied with Niels Bohr, taught Richard Feynman, and boned up on relativity with his friend and colleague Albert Einstein. John Archibald Wheeler's fascinating life brings us face to face with the central characters and discoveries of modern physics. He was the first American to learn of the discovery of nuclear fission, later coined the term "black hole," led a renaissance in gravitation physics, and helped to build Princeton University into a mecca for physicists. From nuclear physics, to quantum theory, to relativity and gravitation, Wheeler's work has set the trajectory of research for half a century. His career has brought him into contact with the most brilliant minds of his field; Fermi, Bethe, Rabi, Teller, Oppenheimer, and Wigner are among those he called colleagues and friends. In this rich autobiography, Wheeler reveals in fascinating detail the excitement of each discovery, the character of each colleague, and the underlying passion for knowledge that drives him still.


Nanostructure Science and Technology

Nanostructure Science and Technology

Author: Richard W. Siegel

Publisher: Springer Science & Business Media

Published: 1999-09-30

Total Pages: 378

ISBN-13: 9780792358541

DOWNLOAD EBOOK

Timely information on scientific and engineering developments occurring in laboratories around the world provides critical input to maintaining the economic and technological strength of the United States. Moreover, sharing this information quickly with other countries can greatly enhance the productivity of scientists and engineers. These are some of the reasons why the National Science Foundation (NSF) has been involved in funding science and technology assessments comparing the United States and foreign countries since the early 1980s. A substantial number of these studies have been conducted by the World Technology Evaluation Center (WTEC) managed by Loyola College through a cooperative agreement with NSF. The National Science and Technology Council (NSTC), Committee on Technology's Interagency Working Group on NanoScience, Engineering and Technology (CT/IWGN) worked with WTEC to develop the scope of this Nanostucture Science and Technology report in an effort to develop a baseline of understanding for how to strategically make Federal nanoscale R&D investments in the coming years. The purpose of the NSTC/WTEC activity is to assess R&D efforts in other countries in specific areas of technology, to compare these efforts and their results to U. S. research in the same areas, and to identify opportunities for international collaboration in precompetitive research. Many U. S. organizations support substantial data gathering and analysis efforts focusing on nations such as Japan. But often the results of these studies are not widely available. At the same time, government and privately sponsored studies that are in the public domain tend to be "input" studies.


Ion-Solid Interactions

Ion-Solid Interactions

Author: Michael Nastasi

Publisher: Cambridge University Press

Published: 1996-03-29

Total Pages: 572

ISBN-13: 052137376X

DOWNLOAD EBOOK

Comprehensive guide to an important materials science technique for students and researchers.


Physical Foundations of Materials Science

Physical Foundations of Materials Science

Author: Günter Gottstein

Publisher: Springer Science & Business Media

Published: 2013-03-09

Total Pages: 511

ISBN-13: 3662092913

DOWNLOAD EBOOK

In this vivid and comprehensible introduction to materials science, the author expands the modern concepts of metal physics to formulate basic theory applicable to other engineering materials, such as ceramics and polymers. Written for engineering students and working engineers with little previous knowledge of solid-state physics, this textbook enables the reader to study more specialized and fundamental literature of materials science. Dozens of illustrative photographs, many of them transmission electron microscopy images, plus line drawings, aid developing a firm appreciation of this complex topic. Hard-to-grasp terms such as "textures" are lucidly explained - not only the phenomenon itself, but also its consequences for the material properties. This excellent book makes materials science more transparent.


Crystal Plasticity Finite Element Methods

Crystal Plasticity Finite Element Methods

Author: Franz Roters

Publisher: John Wiley & Sons

Published: 2011-08-04

Total Pages: 188

ISBN-13: 3527642099

DOWNLOAD EBOOK

Written by the leading experts in computational materials science, this handy reference concisely reviews the most important aspects of plasticity modeling: constitutive laws, phase transformations, texture methods, continuum approaches and damage mechanisms. As a result, it provides the knowledge needed to avoid failures in critical systems udner mechanical load. With its various application examples to micro- and macrostructure mechanics, this is an invaluable resource for mechanical engineers as well as for researchers wanting to improve on this method and extend its outreach.


Metal-Organic Framework Materials

Metal-Organic Framework Materials

Author: Leonard R. MacGillivray

Publisher: John Wiley & Sons

Published: 2014-09-19

Total Pages: 1210

ISBN-13: 1118931580

DOWNLOAD EBOOK

Metal-Organic Frameworks (MOFs) are crystalline compounds consisting of rigid organic molecules held together and organized by metal ions or clusters. Special interests in these materials arise from the fact that many are highly porous and can be used for storage of small molecules, for example H2 or CO2. Consequently, the materials are ideal candidates for a wide range of applications including gas storage, separation technologies and catalysis. Potential applications include the storage of hydrogen for fuel-cell cars, and the removal and storage of carbon dioxide in sustainable technical processes. MOFs offer the inorganic chemist and materials scientist a wide range of new synthetic possibilities and open the doors to new and exciting basic research. Metal-Organic Frameworks Materials provides a solid basis for the understanding of MOFs and insights into new inorganic materials structures and properties. The volume also reflects progress that has been made in recent years, presenting a wide range of new applications including state-of-the art developments in the promising technology for alternative fuels. The comprehensive volume investigates structures, symmetry, supramolecular chemistry, surface engineering, recognition, properties, and reactions. The content from this book will be added online to the Encyclopedia of Inorganic and Bioinorganic Chemistry: http://www.wileyonlinelibrary.com/ref/eibc


Nanotechnology-Enabled Sensors

Nanotechnology-Enabled Sensors

Author: Kourosh Kalantar-zadeh

Publisher: Springer Science & Business Media

Published: 2007-09-19

Total Pages: 502

ISBN-13: 0387680233

DOWNLOAD EBOOK

Nanotechnology provides tools for creating functional materials, devices, and systems by controlling materials at the atomic and molecular scales and making use of novel properties and phenomena. Nanotechnology-enabled sensors find applications in several fields such as health and safety, medicine, process control and diagnostics. This book provides the reader with information on how nanotechnology enabled sensors are currently being used and how they will be used in the future in such diverse fields as communications, building and facilities, medicine, safety, and security, including both homeland defense and military operations.


Springer Handbook of Microscopy

Springer Handbook of Microscopy

Author: Peter W. Hawkes

Publisher: Springer Nature

Published: 2019-11-02

Total Pages: 1561

ISBN-13: 3030000699

DOWNLOAD EBOOK

This book features reviews by leading experts on the methods and applications of modern forms of microscopy. The recent awards of Nobel Prizes awarded for super-resolution optical microscopy and cryo-electron microscopy have demonstrated the rich scientific opportunities for research in novel microscopies. Earlier Nobel Prizes for electron microscopy (the instrument itself and applications to biology), scanning probe microscopy and holography are a reminder of the central role of microscopy in modern science, from the study of nanostructures in materials science, physics and chemistry to structural biology. Separate chapters are devoted to confocal, fluorescent and related novel optical microscopies, coherent diffractive imaging, scanning probe microscopy, transmission electron microscopy in all its modes from aberration corrected and analytical to in-situ and time-resolved, low energy electron microscopy, photoelectron microscopy, cryo-electron microscopy in biology, and also ion microscopy. In addition to serving as an essential reference for researchers and teachers in the fields such as materials science, condensed matter physics, solid-state chemistry, structural biology and the molecular sciences generally, the Springer Handbook of Microscopy is a unified, coherent and pedagogically attractive text for advanced students who need an authoritative yet accessible guide to the science and practice of microscopy.