Ulrich Bundles

Ulrich Bundles

Author: Laura Costa

Publisher: Walter de Gruyter GmbH & Co KG

Published: 2021-05-10

Total Pages: 283

ISBN-13: 3110645807

DOWNLOAD EBOOK

The series is devoted to the publication of monographs and high-level textbooks in mathematics, mathematical methods and their applications. Apart from covering important areas of current interest, a major aim is to make topics of an interdisciplinary nature accessible to the non-specialist. The works in this series are addressed to advanced students and researchers in mathematics and theoretical physics. In addition, it can serve as a guide for lectures and seminars on a graduate level. The series de Gruyter Studies in Mathematics was founded ca. 35 years ago by the late Professor Heinz Bauer and Professor Peter Gabriel with the aim to establish a series of monographs and textbooks of high standard, written by scholars with an international reputation presenting current fields of research in pure and applied mathematics. While the editorial board of the Studies has changed with the years, the aspirations of the Studies are unchanged. In times of rapid growth of mathematical knowledge carefully written monographs and textbooks written by experts are needed more than ever, not least to pave the way for the next generation of mathematicians. In this sense the editorial board and the publisher of the Studies are devoted to continue the Studies as a service to the mathematical community. Please submit any book proposals to Niels Jacob.


Moduli Spaces and Vector Bundles—New Trends

Moduli Spaces and Vector Bundles—New Trends

Author: Peter Gothen

Publisher: American Mathematical Society

Published: 2024-07-18

Total Pages: 382

ISBN-13: 1470472961

DOWNLOAD EBOOK

This volume contains the proceedings of the VBAC 2022 Conference on Moduli Spaces and Vector Bundles—New Trends, held in honor of Peter Newstead's 80th birthday, from July 25–29, 2022, at the University of Warwick, Coventry, United Kingdom. The papers focus on the theory of stability conditions in derived categories, non-reductive geometric invariant theory, Brill-Noether theory, and Higgs bundles and character varieties. The volume includes both survey and original research articles. Most articles contain substantial background and will be helpful to both novices and experts.


Singularities, Algebraic Geometry, Commutative Algebra, and Related Topics

Singularities, Algebraic Geometry, Commutative Algebra, and Related Topics

Author: Gert-Martin Greuel

Publisher: Springer

Published: 2018-09-18

Total Pages: 604

ISBN-13: 3319968270

DOWNLOAD EBOOK

This volume brings together recent, original research and survey articles by leading experts in several fields that include singularity theory, algebraic geometry and commutative algebra. The motivation for this collection comes from the wide-ranging research of the distinguished mathematician, Antonio Campillo, in these and related fields. Besides his influence in the mathematical community stemming from his research, Campillo has also endeavored to promote mathematics and mathematicians' networking everywhere, especially in Spain, Latin America and Europe. Because of his impressive achievements throughout his career, we dedicate this book to Campillo in honor of his 65th birthday. Researchers and students from the world-wide, and in particular Latin American and European, communities in singularities, algebraic geometry, commutative algebra, coding theory, and other fields covered in the volume, will have interest in this book.


Analytic and Algebraic Geometry

Analytic and Algebraic Geometry

Author: Anilatmaja Aryasomayajula

Publisher: Springer

Published: 2017-09-08

Total Pages: 294

ISBN-13: 981105648X

DOWNLOAD EBOOK

This volume is an outcome of the International conference held in Tata Institute of Fundamental Research and the University of Hyderabad. There are fifteen articles in this volume. The main purpose of the articles is to introduce recent and advanced techniques in the area of analytic and algebraic geometry. This volume attempts to give recent developments in the area to target mainly young researchers who are new to this area. Also, some research articles have been added to give examples of how to use these techniques to prove new results.


Commutative Algebra and its Interactions to Algebraic Geometry

Commutative Algebra and its Interactions to Algebraic Geometry

Author: Nguyen Tu CUONG

Publisher: Springer

Published: 2018-08-02

Total Pages: 265

ISBN-13: 331975565X

DOWNLOAD EBOOK

This book presents four lectures on recent research in commutative algebra and its applications to algebraic geometry. Aimed at researchers and graduate students with an advanced background in algebra, these lectures were given during the Commutative Algebra program held at the Vietnam Institute of Advanced Study in Mathematics in the winter semester 2013 -2014. The first lecture is on Weyl algebras (certain rings of differential operators) and their D-modules, relating non-commutative and commutative algebra to algebraic geometry and analysis in a very appealing way. The second lecture concerns local systems, their homological origin, and applications to the classification of Artinian Gorenstein rings and the computation of their invariants. The third lecture is on the representation type of projective varieties and the classification of arithmetically Cohen -Macaulay bundles and Ulrich bundles. Related topics such as moduli spaces of sheaves, liaison theory, minimal resolutions, and Hilbert schemes of points are also covered. The last lecture addresses a classical problem: how many equations are needed to define an algebraic variety set-theoretically? It systematically covers (and improves) recent results for the case of toric varieties.


New Trends in Noncommutative Algebra

New Trends in Noncommutative Algebra

Author: Ara, Pere

Publisher: American Mathematical Soc.

Published: 2012

Total Pages: 326

ISBN-13: 0821852973

DOWNLOAD EBOOK

This volume contains the proceedings of the conference `New Trends in Noncommutative Algebra', held at the University of Washington, Seattle, in August 2010. The articles will provide researchers and graduate students with an indispensable overview of topics of current interest. Specific fields covered include: noncommutative algebraic geometry, representation theory, Calabi-Yau algebras, quantum algebras and deformation quantization, Poisson algebras, group algebras, and noncommutative Iwasawa algebras.


Multigrid Methods

Multigrid Methods

Author: Ulrich Trottenberg

Publisher: Academic Press

Published: 2001

Total Pages: 652

ISBN-13: 9780127010700

DOWNLOAD EBOOK

Mathematics of Computing -- Numerical Analysis.


Algebraic Geometry

Algebraic Geometry

Author: Ulrich Görtz

Publisher: Springer Science & Business Media

Published: 2010-08-06

Total Pages: 622

ISBN-13: 3834897221

DOWNLOAD EBOOK

This book introduces the reader to modern algebraic geometry. It presents Grothendieck's technically demanding language of schemes that is the basis of the most important developments in the last fifty years within this area. A systematic treatment and motivation of the theory is emphasized, using concrete examples to illustrate its usefulness. Several examples from the realm of Hilbert modular surfaces and of determinantal varieties are used methodically to discuss the covered techniques. Thus the reader experiences that the further development of the theory yields an ever better understanding of these fascinating objects. The text is complemented by many exercises that serve to check the comprehension of the text, treat further examples, or give an outlook on further results. The volume at hand is an introduction to schemes. To get startet, it requires only basic knowledge in abstract algebra and topology. Essential facts from commutative algebra are assembled in an appendix. It will be complemented by a second volume on the cohomology of schemes.


Algebraic Geometry I: Schemes

Algebraic Geometry I: Schemes

Author: Ulrich Görtz

Publisher: Springer Nature

Published: 2020-07-27

Total Pages: 634

ISBN-13: 3658307331

DOWNLOAD EBOOK

This book introduces the reader to modern algebraic geometry. It presents Grothendieck's technically demanding language of schemes that is the basis of the most important developments in the last fifty years within this area. A systematic treatment and motivation of the theory is emphasized, using concrete examples to illustrate its usefulness. Several examples from the realm of Hilbert modular surfaces and of determinantal varieties are used methodically to discuss the covered techniques. Thus the reader experiences that the further development of the theory yields an ever better understanding of these fascinating objects. The text is complemented by many exercises that serve to check the comprehension of the text, treat further examples, or give an outlook on further results. The volume at hand is an introduction to schemes. To get startet, it requires only basic knowledge in abstract algebra and topology. Essential facts from commutative algebra are assembled in an appendix. It will be complemented by a second volume on the cohomology of schemes.