AAS/AIAA Spaceflight Mechanics Meeting, Jan. 26-30, 2014, Santa Fe, NM

AAS/AIAA Spaceflight Mechanics Meeting, Jan. 26-30, 2014, Santa Fe, NM

Author: American Astronautical Society Conference Contributors

Publisher: Univelt Incorporated

Published: 2014-10-08

Total Pages: 163

ISBN-13: 087703611X

DOWNLOAD EBOOK

Advances in the Astronautical Sciences Series Volume 152 is a collection of scientific papers that were presented at the American Astronautical Society/American Institute of Aeronautics and Astronautics Spaceflight Mechanics Meeting held January 26-30, 2014, in Santa Fe, New Mexico.


Martian Outpost

Martian Outpost

Author: Erik Seedhouse

Publisher: Springer Science & Business Media

Published: 2010-04-11

Total Pages: 321

ISBN-13: 0387981918

DOWNLOAD EBOOK

Mars Outpost provides a detailed insight into the various technologies, mission architectures, medical requirements, and training needed to send humans to Mars. It focuses on mission objectives and benefits, and the risks and complexities that are compounded when linked to an overall planet exploration program involving several expeditions and setting up a permanent presence on the surface. The first section provides the background to sending a human mission to Mars. Analogies are made with early polar exploration and the expeditions of Shackleton, Amundsen, and Mawson. The interplanetary plans of the European Space Agency, NASA, and Russia are examined, including the possibility of one or more nations joining forces to send humans to Mars. Current mission architectures, such as NASA’s Constellation, ESA’s Aurora, and Ross Tierney’s DIRECT, are described and evaluated. The next section looks at how humans will get to the Red Planet, beginning with the preparation of the crew. The author examines the various analogues to understand the problems Mars-bound astronauts will face. Additional chapters describe the transportation hardware necessary to launch 4-6 astronauts on an interplanetary trajectory to Mars, including the cutting edge engineering and design of life support systems required to protect crews for more than a year from the lethal radiation encountered in deep space. NASA’s current plan is to use standard chemical propulsion technology, but eventually Mars crews will take advantage of advanced propulsion concepts, such as the Variable Specific Impulse Magnetoplasma Rocket, ion drives and nuclear propulsion. The interplanetary options for reaching Mars, as well as the major propulsive maneuvers required and the trajectories and energy requirements for manned and unmanned payloads, are reviewed . Another chapter addresses the daunting medical problems and available countermeasures for humans embarking on a mission to Mars: the insidious effects of radiation on the human body and the deleterious consequences of bone and muscle deconditioning. Crew selection will be considered, bearing in mind the strong possibility that they may not be able to return to Earth. Still another chapter describes the guidance, navigation, and control system architecture, as well as the lander design requirements and crew tasks and responsibilities required to touch down on the Red Planet. Section 3 looks at the surface mission architectures. Seedhouse describes such problems as radiation, extreme temperatures, and construction challenges that will be encountered by colonists. He examines proposed concepts for transporting cargo and astronauts long distances across the Martian surface using magnetic levitation systems, permanent rail systems, and flying vehicles. In the penultimate chapter of the book, the author explains an adaptable and mobile exploration architecture that will enable long-term human exploration of Mars, perhaps making it the next space-based tourist location.


Low-Energy Lunar Trajectory Design

Low-Energy Lunar Trajectory Design

Author: Jeffrey S. Parker

Publisher: John Wiley & Sons

Published: 2014-06-25

Total Pages: 452

ISBN-13: 1118855310

DOWNLOAD EBOOK

Based on years of research conducted at the NASA Jet Propulsion Laboratory, Low-Energy Lunar Trajectory Design provides high-level information to mission managers and detailed information to mission designers about low-energy transfers between Earth and the moon. The book answers high-level questions about the availability and performance of such transfers in any given month and year. Low-energy lunar transfers are compared with various other types of transfers, and placed within the context of historical missions. Using this book, designers may reconstruct any transfer described therein, as well as design similar transfers with particular design parameters. An Appendix, “Locating the Lagrange Points,” and a useful list of terms and constants completes this technical reference. Surveys thousands of possible trajectories that may be used to transfer spacecraft between Earth and the moon, including transfers to lunar libration orbits, low lunar orbits, and the lunar surface Provides information about the methods, models, and tools used to design low-energy lunar transfers Includes discussion about the variations of these transfers from one month to the next, and the important operational aspects of implementing a low-energy lunar transfer Additional discussions address navigation, station-keeping, and spacecraft systems issues


Libration Point Orbits And Applications - Proceedings Of The Conference

Libration Point Orbits And Applications - Proceedings Of The Conference

Author: Gerard Gomez

Publisher: World Scientific

Published: 2003-05-07

Total Pages: 695

ISBN-13: 9814486043

DOWNLOAD EBOOK

This book presents the state of the art in numerical and analytical techniques as well as future trends associated with mission design for libration point orbits. It contains papers explaining theoretical developments and their applications, including the accurate description of some actual libration point missions of ESA and NASA. The existing software in the field and some applications beyond the neighborhood of the Earth are also presented. Special emphasis is placed on the use of dynamical systems methodology in the libration-point-orbits mission design.


Dynamics of Information Systems: Mathematical Foundations

Dynamics of Information Systems: Mathematical Foundations

Author: Alexey Sorokin

Publisher: Springer Science & Business Media

Published: 2012-08-04

Total Pages: 374

ISBN-13: 146143906X

DOWNLOAD EBOOK

This book presents recent developments and results found by participants of the Third International Conference on the Dynamics of Information Systems, which took place at the University of Florida, Gainesville FL, USA on February 16-18, 2011. The purpose of this conference was to bring together scientists and engineers from industry, government, and universities to exchange knowledge and results in a broad range of topics relevant to the theory and practice of the dynamics of information systems. Dynamics of Information plays an increasingly critical role in our society. The influence of information on social, biological, genetic, and military systems must be better understood to achieve large advances in the capability and understanding of these systems. Applications are widespread and include: research in evolutionary theory, optimization of information workflow, military applications, climate networks, collision work, and much more. Dynamics of Information plays an increasingly critical role in our society. The influence of information on social, biological, genetic, and military systems must be better understood to achieve large advances in the capability and understanding of these systems. Applications are widespread and include: research in evolutionary theory, optimization of information workflow, military applications, climate networks, collision work, and much more.