Tutorials in Mathematical Biosciences III

Tutorials in Mathematical Biosciences III

Author: Avner Friedman

Publisher: Springer Science & Business Media

Published: 2005-12-19

Total Pages: 260

ISBN-13: 9783540291626

DOWNLOAD EBOOK

This volume introduces some basic mathematical models for cell cycle, proliferation, cancer, and cancer therapy. Chapter 1 gives an overview of the modeling of the cell division cycle. Chapter 2 describes how tumor secretes growth factors to form new blood vessels in its vicinity, which provide it with nutrients it needs in order to grow. Chapter 3 explores the process that enables the tumor to invade the neighboring tissue. Chapter 4 models the interaction between a tumor and the immune system. Chapter 5 is concerned with chemotherapy; it uses concepts from control theory to minimize obstacles arising from drug resistance and from cell cycle dynamics. Finally, Chapter 6 reviews mathematical results for various cancer models.


Tutorials in Mathematical Biosciences II

Tutorials in Mathematical Biosciences II

Author: James Sneyd

Publisher: Springer Science & Business Media

Published: 2005-06-22

Total Pages: 228

ISBN-13: 9783540254393

DOWNLOAD EBOOK

This book presents a series of models in the general area of cell physiology and signal transduction, with particular attention being paid to intracellular calcium dynamics, and the role played by calcium in a variety of cell types. Calcium plays a crucial role in cell physiology, and the study of its dynamics lends insight into many different cellular processes. In particular, calcium plays a central role in muscular contraction, olfactory transduction and synaptic communication, three of the topics to be addressed in detail in this book. In addition to the models, much of the underlying physiology is presented, so that readers may learn both the mathematics and the physiology, and see how the models are applied to specific biological questions. It is intended primarily as a graduate text or a research reference. It will serve as a concise and up-to-date introduction to all those who wish to learn about the state of calcium dynamics modeling, and how such models are applied to physiological questions.


Tutorials in Mathematical Biosciences III

Tutorials in Mathematical Biosciences III

Author: Avner Friedman

Publisher: Springer

Published: 2005-11-23

Total Pages: 254

ISBN-13: 3540324151

DOWNLOAD EBOOK

This volume introduces some basic mathematical models for cell cycle, proliferation, cancer, and cancer therapy. Chapter 1 gives an overview of the modeling of the cell division cycle. Chapter 2 describes how tumor secretes growth factors to form new blood vessels in its vicinity, which provide it with nutrients it needs in order to grow. Chapter 3 explores the process that enables the tumor to invade the neighboring tissue. Chapter 4 models the interaction between a tumor and the immune system. Chapter 5 is concerned with chemotherapy; it uses concepts from control theory to minimize obstacles arising from drug resistance and from cell cycle dynamics. Finally, Chapter 6 reviews mathematical results for various cancer models.


Tutorials in Mathematical Biosciences III

Tutorials in Mathematical Biosciences III

Author: Avner Friedman

Publisher: Springer

Published: 2009-09-02

Total Pages: 246

ISBN-13: 9783540816317

DOWNLOAD EBOOK

This volume introduces some basic mathematical models for cell cycle, proliferation, cancer, and cancer therapy. Chapter 1 gives an overview of the modeling of the cell division cycle. Chapter 2 describes how tumor secretes growth factors to form new blood vessels in its vicinity, which provide it with nutrients it needs in order to grow. Chapter 3 explores the process that enables the tumor to invade the neighboring tissue. Chapter 4 models the interaction between a tumor and the immune system. Chapter 5 is concerned with chemotherapy; it uses concepts from control theory to minimize obstacles arising from drug resistance and from cell cycle dynamics. Finally, Chapter 6 reviews mathematical results for various cancer models.


A Course in Mathematical Biology

A Course in Mathematical Biology

Author: Gerda de Vries

Publisher: SIAM

Published: 2006-07-01

Total Pages: 307

ISBN-13: 0898718252

DOWNLOAD EBOOK

This is the only book that teaches all aspects of modern mathematical modeling and that is specifically designed to introduce undergraduate students to problem solving in the context of biology. Included is an integrated package of theoretical modeling and analysis tools, computational modeling techniques, and parameter estimation and model validation methods, with a focus on integrating analytical and computational tools in the modeling of biological processes. Divided into three parts, it covers basic analytical modeling techniques; introduces computational tools used in the modeling of biological problems; and includes various problems from epidemiology, ecology, and physiology. All chapters include realistic biological examples, including many exercises related to biological questions. In addition, 25 open-ended research projects are provided, suitable for students. An accompanying Web site contains solutions and a tutorial for the implementation of the computational modeling techniques. Calculations can be done in modern computing languages such as Maple, Mathematica, and MATLAB?.


The Method of Intrinsic Scaling

The Method of Intrinsic Scaling

Author: José Miguel Urbano

Publisher: Springer

Published: 2008-06-06

Total Pages: 158

ISBN-13: 3540759328

DOWNLOAD EBOOK

This set of lectures, which had its origin in a mini course delivered at the Summer Program of IMPA (Rio de Janeiro), is an introduction to intrinsic scaling, a powerful method in the analysis of degenerate and singular PDEs.In the first part, the theory is presented from scratch for the model case of the degenerate p-Laplace equation. The second part deals with three applications of the theory to relevant models arising from flows in porous media and phase transitions.


Multiscale Problems in the Life Sciences

Multiscale Problems in the Life Sciences

Author: Jacek Banasiak

Publisher: Springer Science & Business Media

Published: 2008-05-30

Total Pages: 341

ISBN-13: 3540783601

DOWNLOAD EBOOK

The aim of this volume that presents lectures given at a joint CIME and Banach Center Summer School, is to offer a broad presentation of a class of updated methods providing a mathematical framework for the development of a hierarchy of models of complex systems in the natural sciences, with a special attention to biology and medicine. Mastering complexity implies sharing different tools requiring much higher level of communication between different mathematical and scientific schools, for solving classes of problems of the same nature. Today more than ever, one of the most important challenges derives from the need to bridge parts of a system evolving at different time and space scales, especially with respect to computational affordability. As a result the content has a rather general character; the main role is played by stochastic processes, positive semigroups, asymptotic analysis, kinetic theory, continuum theory, and game theory.


Generalized Bessel Functions of the First Kind

Generalized Bessel Functions of the First Kind

Author: Árpád Baricz

Publisher: Springer

Published: 2010-06-17

Total Pages: 225

ISBN-13: 3642122302

DOWNLOAD EBOOK

In this volume we study the generalized Bessel functions of the first kind by using a number of classical and new findings in complex and classical analysis. Our aim is to present interesting geometric properties and functional inequalities for these generalized Bessel functions. Moreover, we extend many known inequalities involving circular and hyperbolic functions to Bessel and modified Bessel functions.