Dynamical Gauge Symmetry Breaking

Dynamical Gauge Symmetry Breaking

Author: Edward Farhi

Publisher: World Scientific

Published: 1982-01-01

Total Pages: 431

ISBN-13: 9814518360

DOWNLOAD EBOOK

This book is a collection of original papers on dynamical gauge symmetry breaking, and is intended for graduate students and researchers in theoretical physics (elementary particle physics and others) who have an understanding of basic quantum field theory. The book can serve as a research text for those requiring an introduction to dynamical gauge symmetry breaking and as a reference text for active researchers. The important papers in the field that are included deal with attempts to apply the ideas to realistic models of elementary particle interactions. A historical critique by the editors provides an introductory review.


Matrix, Numerical, and Optimization Methods in Science and Engineering

Matrix, Numerical, and Optimization Methods in Science and Engineering

Author: Kevin W. Cassel

Publisher: Cambridge University Press

Published: 2021-03-04

Total Pages: 728

ISBN-13: 1108787622

DOWNLOAD EBOOK

Address vector and matrix methods necessary in numerical methods and optimization of linear systems in engineering with this unified text. Treats the mathematical models that describe and predict the evolution of our processes and systems, and the numerical methods required to obtain approximate solutions. Explores the dynamical systems theory used to describe and characterize system behaviour, alongside the techniques used to optimize their performance. Integrates and unifies matrix and eigenfunction methods with their applications in numerical and optimization methods. Consolidating, generalizing, and unifying these topics into a single coherent subject, this practical resource is suitable for advanced undergraduate students and graduate students in engineering, physical sciences, and applied mathematics.


Dynamic Mode Decomposition

Dynamic Mode Decomposition

Author: J. Nathan Kutz

Publisher: SIAM

Published: 2016-11-23

Total Pages: 241

ISBN-13: 1611974496

DOWNLOAD EBOOK

Data-driven dynamical systems is a burgeoning field?it connects how measurements of nonlinear dynamical systems and/or complex systems can be used with well-established methods in dynamical systems theory. This is a critically important new direction because the governing equations of many problems under consideration by practitioners in various scientific fields are not typically known. Thus, using data alone to help derive, in an optimal sense, the best dynamical system representation of a given application allows for important new insights. The recently developed dynamic mode decomposition (DMD) is an innovative tool for integrating data with dynamical systems theory. The DMD has deep connections with traditional dynamical systems theory and many recent innovations in compressed sensing and machine learning. Dynamic Mode Decomposition: Data-Driven Modeling of Complex Systems, the first book to address the DMD algorithm, presents a pedagogical and comprehensive approach to all aspects of DMD currently developed or under development; blends theoretical development, example codes, and applications to showcase the theory and its many innovations and uses; highlights the numerous innovations around the DMD algorithm and demonstrates its efficacy using example problems from engineering and the physical and biological sciences; and provides extensive MATLAB code, data for intuitive examples of key methods, and graphical presentations.


Elementary Fluid Mechanics

Elementary Fluid Mechanics

Author: Tsutomu Kambe

Publisher: World Scientific

Published: 2007

Total Pages: 403

ISBN-13: 9812706674

DOWNLOAD EBOOK

This textbook describes the fundamental OC physicalOCO aspects of fluid flows for beginners of fluid mechanics in physics, mathematics and engineering, from the point of view of modern physics. It also emphasizes the dynamical aspects of fluid motions rather than the static aspects, illustrating vortex motions, waves, geophysical flows, chaos and turbulence. Beginning with the fundamental concepts of the nature of flows and the properties of fluids, the book presents fundamental conservation equations of mass, momentum and energy, and the equations of motion for both inviscid and viscous fluids. In addition to the fundamentals, this book also covers water waves and sound waves, vortex motions, geophysical flows, nonlinear instability, chaos, and turbulence. Furthermore, it includes the chapters on superfluids and the gauge theory of fluid flows. The material in the book emerged from the lecture notes for an intensive course on Elementary Fluid Mechanics for both undergraduate and postgraduate students of theoretical physics given in 2003 and 2004 at the Nankai Institute of Mathematics (Tianjin) in China. Hence, each chapter may be presented separately as a single lecture."


Model Order Reduction: Theory, Research Aspects and Applications

Model Order Reduction: Theory, Research Aspects and Applications

Author: Wilhelmus H. Schilders

Publisher: Springer Science & Business Media

Published: 2008-08-27

Total Pages: 471

ISBN-13: 3540788417

DOWNLOAD EBOOK

The idea for this book originated during the workshop “Model order reduction, coupled problems and optimization” held at the Lorentz Center in Leiden from S- tember 19–23, 2005. During one of the discussion sessions, it became clear that a book describing the state of the art in model order reduction, starting from the very basics and containing an overview of all relevant techniques, would be of great use for students, young researchers starting in the ?eld, and experienced researchers. The observation that most of the theory on model order reduction is scattered over many good papers, making it dif?cult to ?nd a good starting point, was supported by most of the participants. Moreover, most of the speakers at the workshop were willing to contribute to the book that is now in front of you. The goal of this book, as de?ned during the discussion sessions at the workshop, is three-fold: ?rst, it should describe the basics of model order reduction. Second, both general and more specialized model order reduction techniques for linear and nonlinear systems should be covered, including the use of several related numerical techniques. Third, the use of model order reduction techniques in practical appli- tions and current research aspects should be discussed. We have organized the book according to these goals. In Part I, the rationale behind model order reduction is explained, and an overview of the most common methods is described.


Nonlinear Dynamics and Chaos

Nonlinear Dynamics and Chaos

Author: Steven H. Strogatz

Publisher: CRC Press

Published: 2018-05-04

Total Pages: 532

ISBN-13: 0429961111

DOWNLOAD EBOOK

This textbook is aimed at newcomers to nonlinear dynamics and chaos, especially students taking a first course in the subject. The presentation stresses analytical methods, concrete examples, and geometric intuition. The theory is developed systematically, starting with first-order differential equations and their bifurcations, followed by phase plane analysis, limit cycles and their bifurcations, and culminating with the Lorenz equations, chaos, iterated maps, period doubling, renormalization, fractals, and strange attractors.


Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields

Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields

Author: John Guckenheimer

Publisher: Springer Science & Business Media

Published: 2013-11-21

Total Pages: 475

ISBN-13: 1461211409

DOWNLOAD EBOOK

An application of the techniques of dynamical systems and bifurcation theories to the study of nonlinear oscillations. Taking their cue from Poincare, the authors stress the geometrical and topological properties of solutions of differential equations and iterated maps. Numerous exercises, some of which require nontrivial algebraic manipulations and computer work, convey the important analytical underpinnings of problems in dynamical systems and help readers develop an intuitive feel for the properties involved.