Tunneling Phenomena in Solids

Tunneling Phenomena in Solids

Author: Elias Burstein

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 574

ISBN-13: 1468417525

DOWNLOAD EBOOK

The aim of this volume is to provide advanced predoctoral students and young postdoctoral physicists with an opportunity to study the concepts of tunneling phenomena in solids and the theoretical and experimental techniques for their investigation. The contributions are primarily tutorial in nature, covering theoretical and experimental aspects of electron tunnel ing in semiconductors, metals, and superconductors, and atomic tunneling in solids. The work is based upon the lectures delivered at the Advanced Study Institute on "Tunneling Phenomena in Solids," held at the Danish A. E. C. Research Establishment, Riso, Denmark, June 19-30, 1967. Sponsored by the Danish Atomic Energy Commission, the Nordic Institute for Theoretical Physics (NORDITA), and the Science Affairs Division of NATO, with the cooperation of the University of Copenhagen, the Technical University of Denmark, Chalmers Institute of Technology, and the University of Penn sylvania, the lectures were presented by a distinguished panel of scientists who have made major contributions in the field. The relatively large number of lecturers was, in part, made possible by the close coordination of the Advanced Study Institute with the Second International Conference on Electron Tunneling in Solids, which was held at Riso on June 29, 30 and July 1, 1967, under the sponsorship of the U. S. Army Research Office Durham. We are indebted to I. Giaever, E. O. Kane, J. Rowell, and J. R. Schrieffer for advice and assistance in planning the lecture program of the Institute.


Tunneling Systems in Amorphous and Crystalline Solids

Tunneling Systems in Amorphous and Crystalline Solids

Author: Pablo Esquinazi

Publisher: Springer Science & Business Media

Published: 2013-03-09

Total Pages: 616

ISBN-13: 3662036959

DOWNLOAD EBOOK

This comprehensive book provides a full description of experimental and theoretical details and the latest theories. The expert contributions point out the direction research is currently taking, the expectations and implications, serving as useful introductory surveys.


Tunneling Phenomena in Chemical Physics

Tunneling Phenomena in Chemical Physics

Author: V.I. Gol'danskii

Publisher: CRC Press

Published: 1988-01-01

Total Pages: 350

ISBN-13: 9782881246555

DOWNLOAD EBOOK

Surveys the contemporary concepts and theoretical and experimental results of tunneling processes. Examines from a unified viewpoint not only chemical reactions but also other physical physicochemical and biological phenomena in which the tunneling effect is of great importance. Covers the general ideas of tunneling, the low temperature chemical reactions that manifest tunneling mechanisms, tunneling effects in amorphous materials, quantum diffusion and surface phenomena in quantum crystals, hopping diffusion and tunneling scavenging of electrons, and tunneling effects in biological systems.


Single Charge Tunneling

Single Charge Tunneling

Author: Hermann Grabert

Publisher: Springer Science & Business Media

Published: 2013-11-27

Total Pages: 344

ISBN-13: 1475721668

DOWNLOAD EBOOK

The field of single charge tunneling comprises of phenomena where the tunneling of a microscopic charge, usually carried by an electron or a Cooper pair, leads to macro scopically observable effects. The first conference entirely devoted to this new field was the NATO Advanced Study Institute on Single Charge Tunneling held in Les Hauches, France, March 5-15, 1991. This book contains a series of tutorial articles based on lectures presented at the meeting. It was intended to provide both an introduction for nonexperts and a valuable reference summarizing the state of the art of single charge tun neling. A complementary publication with contributions by participants of the NATO Advanced Study Institute is the Special Issue on Single Charge Tunneling of Zeitschrift für Physik B, Vol. 85, pp. 317-468 (1991 ). That issue with original papers provides a snapshot af the leading edge of current research in the field. The success of the meeting and the publicatian of this volume was made possible through the generaus support af the NATO Scientific A:ffairs Division, Brussels, Belgium. The Centre de Physique des Hauches has provided a superbly situated conference site and took care af many lacal arrangements. Both far the preparation of the conference and the handling af some manuscripts the suppart af the Centre d 'Etudes de Saclay was essential. The editing of the proceedings volume would not have been passible without the dedicated efforts of Dr. G. -1. Ingald, who tailared a 1\.


University Physics

University Physics

Author: OpenStax

Publisher:

Published: 2016-11-04

Total Pages: 622

ISBN-13: 9781680920451

DOWNLOAD EBOOK

University Physics is a three-volume collection that meets the scope and sequence requirements for two- and three-semester calculus-based physics courses. Volume 1 covers mechanics, sound, oscillations, and waves. Volume 2 covers thermodynamics, electricity and magnetism, and Volume 3 covers optics and modern physics. This textbook emphasizes connections between between theory and application, making physics concepts interesting and accessible to students while maintaining the mathematical rigor inherent in the subject. Frequent, strong examples focus on how to approach a problem, how to work with the equations, and how to check and generalize the result. The text and images in this textbook are grayscale.


Hopping Transport in Solids

Hopping Transport in Solids

Author: M. Pollak

Publisher: Elsevier

Published: 1991-07-26

Total Pages: 468

ISBN-13: 0444600817

DOWNLOAD EBOOK

The hopping process, which differs substantially from conventional transport processes in crystals, is the central process in the transport phenomena discussed in this book. Throughout the book the term ``hopping'' is defined as the inelastic tunneling transfer of an electron between two localized electronic states centered at different locations. Such processes do not occur in conventional electronic transport in solids, since localized states are not compatible with the translational symmetry of crystals.The rapid growth of interest in hopping transport has followed in the footsteps of the development of physics of disordered systems during the last three decades. The intense interest in disordered solids can be attributed to the technological potential of the new noncrystalline materials, as well as to new fundamental problems discovered in solid state physics when a crystal is no longer translationally symmetric.In the last decade hopping systems such as organic polymers, biological materials, many oxide glasses, mesoscopic systems, and the new high-temperature superconducting materials in their normal state have attracted much interest. New phenomena investigated recently include interference and coherent scattering in variable range hopping conduction, mesoscopic effects, relaxation processes and thermo-electric power, and thermal conductivity caused by hopping transport. This volume presents the reader with a thorough overview of these recent developments, written by leading experts in the various fields.


Solid State Theory

Solid State Theory

Author: Walter A. Harrison

Publisher: Courier Corporation

Published: 2012-04-30

Total Pages: 580

ISBN-13: 0486152235

DOWNLOAD EBOOK

DIVThorough, modern study of solid state physics; solid types and symmetry, electron states, electronic properties and cooperative phenomena. /div


The Physics of Instabilities in Solid State Electron Devices

The Physics of Instabilities in Solid State Electron Devices

Author: Harold L. Grubin

Publisher: Springer Science & Business Media

Published: 2013-11-11

Total Pages: 474

ISBN-13: 1489923446

DOWNLOAD EBOOK

The past three decades have been a period where useful current and voltage instabilities in solids have progressed from exciting research problems to a wide variety of commercially available devices. Materials and electronics research has led to devices such as the tunnel (Esaki) diode, transferred electron (Gunn) diode, avalanche diodes, real-space transfer devices, and the like. These structures have proven to be very important in the generation, amplification, switching, and processing of microwave signals up to frequencies exceeding 100 GHz. In this treatise we focus on a detailed theoretical understanding of devices of the kind that can be made unstable against circuit oscillations, large amplitude switching events, and in some cases, internal rearrangement of the electric field or current density distribution. The book is aimed at the semiconductor device physicist, engineer, and graduate student. A knowledge of solid state physics on an elementary or introductory level is assumed. Furthermore, we have geared the book to device engineers and physicists desirous of obtaining an understanding substantially deeper than that associated with a small signal equivalent circuit approach. We focus on both analytical and numerical treatment of specific device problems, concerning ourselves with the mechanism that determines the constitutive relation governing the device, the boundary conditions (contact effects), and the effect of the local circuit environment.