Vast knowledge has been developed in the area of tunnelling in weak rocks over the years, and this book bridges an important gap by bringing all the information together for the benefit of the tunnelling Industry. In particular, tunnelling in poor conditions is a huge challenge for engineers and designers, and this book tackles all typical problems headon. Topics covered include classification approach, design approaches for site-specific grounds, a new invention on shielded tunnel boring machine, case histories, tunnel mechanics, risk engineering and management culture. - Based on extensive field research experiences in Himalayan region and Alps - Exclusive chapters on tunnelling hazards, squeezing ground conditions (a full detailed case study), swelling ground conditions, critical state rock mechanics, etc. - Supported by over 180 figures and 90 tables of data, and test examples (with solutions)
Rock Engineering is a valuable reference tool for geotechnical engineers, geologists, consultants, contractors, and advanced students on rock engineering and engineering geology courses.
Rockbolting: Principles and Applications brings current theoretical and practical developments in the most widely used support device for underground rock excavations. Today, one cannot find any rock excavation project that does not use rockbolts for rock support. The worldwide annual assumption of rockbolts is in the billions, with pieces applied to mines, tunnels and other types of geotechnical projects for rock and soil reinforcement. The text is based on over 25 years of experience of the author both as academic and practitioner. The book introduces the principles and background concepts of rock support, and then offers a comprehensive overview of the mechanics of rockbolting, as well as current rock bolt types such as mechanical, grouted, self-drilling, grouted cables, frictional and yield rockbolts. Installation and performance assessment are covered next including load-displacement curves and energy-absorption capacities. Two chapters on design and quality control, respectively, cover failure mechanics, the selection process and the connections with other supporting devices. On quality control, the author explains the usual tests and displacement measurements. The final chapter brings current case studies that combine the concepts presented in the whole book. The book is a professional reference for engineers in the mining and geotechnical industries and can be used as research material for academics in rock mechanics and stability studies. - Offers theoretical knowledge on rock bolts and rockbolting - Covers the standard and most recent types of rockbolts - Includes information on rockbolting in high stress rock - Presents case studies that introduce practical applications in several conditions
This book discusses the science and technology of tunneling for the 21st Century. It includes topics related to planning, geological and environmental investigations, as well as the maintenance and the longevity of tunnels.
Sprayed concrete lined (SCL) tunnels are growing rapidly in popularity due to their versatility. The design and construction of both hard rock and soft ground tunnels has been revolutionised by the advent of the SCL method and now the use of permanent sprayed concrete linings has unlocked the true potential of the method to minimise construction costs and times. Yet the complex early age behaviour of the sprayed concrete makes the design difficult and requires a robust management system during construction. Consequently the great advantages of the method must be balanced against the risks, as a few high-profile tunnel collapses have illustrated. Practising engineers on site, in the design office or in client organizations will find this book an excellent introduction. It covers all aspects of SCL tunnelling – from the constituents of sprayed concrete to detailed design and management during construction. Although there is a close interdependence between all the facets of sprayed concrete, few engineers have the right breadth of experience and expertise to cover all of them. This urgently needs to be transferred to the wider engineering community as SCL tunnels play an increasingly important role in the delivery of the underground infrastructure which modern urban life demands. In this second edition, beyond a general updating to reflect new developments, the sections on permanent sprayed concrete, the innovative technology of spray applied waterproofing membranes, fibre reinforcement (both steel and macrosynthetic) and composite lining design have been expanded. Sustainability and environmental impact are addressed in a new section.
Ore extraction through surface and underground mining continues to involve deeper excavations in more complex rock mass conditions. Communities and infrastructure are increasingly exposed to rock slope hazards as they expand further into rugged mountainous terrains. Volume 1 presents papers describing new technologies, ideas and insights concerning fundamental rock mechanics, while the second volume comprises a collection of rock engineering case histories relevant to the major themes of the symposium: rock slope hazards, geotechnical infrastructure, surface and underground mining, and petroleum exploitation.
Featuring contributions from major technology vendors, industry consortia, and government and private research establishments, the Industrial Communication Technology Handbook, Second Edition provides comprehensive and authoritative coverage of wire- and wireless-based specialized communication networks used in plant and factory automation, automotive applications, avionics, building automation, energy and power systems, train applications, and more. New to the Second Edition: 46 brand-new chapters and 21 substantially revised chapters Inclusion of the latest, most significant developments in specialized communication technologies and systems Addition of new application domains for specialized networks The Industrial Communication Technology Handbook, Second Edition supplies readers with a thorough understanding of the application-specific requirements for communication services and their supporting technologies. It is useful to a broad spectrum of professionals involved in the conception, design, development, standardization, and use of specialized communication networks as well as academic institutions engaged in engineering education and vocational training.
This Practical Guide to Rock Tunneling fills an important void in the literature for a practical guide to the design and construction of tunnels in rock. Practical Guide to Rock Tunneling takes the reader through all the critical steps of the design and construction for rock tunnels starting from geotechnical site investigations through to construction supervision. The guide provides suggestions and recommendations for practitioners on special topics of laboratory testing, durability of rock and acceptance for unlined water conveyance tunnels, overstressing or deep and long tunnels, risk-based evaluation of excavation methods, contract strategies, and post-construction inspections. Key considerations and lessons learned from selected case projects are presented based on the author’s extensive international experience of over 30 years and 1000 km of tunneling for civil, hydropower, and mining infrastructure, including some of the most recognized projects in the world to date. Instead of revisiting all theory and concepts that can be found in other sources, this book contains the hard learned lessons from the author’s experience in the field of Rock Tunneling, gathered over 30 years of service.
With the ever-increasing developmental activities as diverse as the construction of dams, roads, tunnels, underground powerhouses and storage facilities, petroleum exploration and nuclear repositories, a more comprehensive and updated understanding of rock mass is essential for civil engineers, engineering geologists, geophysicists, and petroleum and mining engineers. Though some contents of this vast subject are included in undergraduate curriculum, there are full-fledged courses on Rock Mechanics/Rock Engineer-ing in postgraduate programmes in civil engineering and mining engineering. Much of the material presented in this book is also taught to geology and geophysics students. In addition, the book is suitable for short courses conducted for teachers, practising engineers and engineering geologists. This book, with contributions from a number of authors with expertise and vast experience in various areas of rock engineering, gives an in-depth analysis of the multidimensional aspects of the subject. The text covers a wide range of topics related to engineering behaviour of rocks and rock masses, their classifications, interpretation of geological mapping of joints through stereographic projection, in situ stress measurements, laboratory and field tests, stability of rock slopes, foundations of structures, including dams and support systems for underground excavations. The Second Edition has been enriched with new topics such as minimum overburden on pressure tunnels, pressure around vertical cylindrical shaft, thickness of steel lining, and penetration rate from joint factor. What distinguishes the text is the application of numerical methods to solve various problems by discrete element and equivalent material concepts, interpretations of geomechanics modelling test data, excavation methods, ground improving methods, and use of roadheaders and TBMs. The book provides an excellent understanding of how to solve problems in rock engineering and should immensely benefit students, teachers, professionals and designers alike.