Advanced Topological Insulators

Advanced Topological Insulators

Author: Huixia Luo

Publisher: John Wiley & Sons

Published: 2019-03-12

Total Pages: 420

ISBN-13: 111940732X

DOWNLOAD EBOOK

This book is the first pedagogical synthesis of the field of topological insulators and superconductors, one of the most exciting areas of research in condensed matter physics. Presenting the latest developments, while providing all the calculations necessary for a self-contained and complete description of the discipline, it is ideal for researchers and graduate students preparing to work in this area, and it will be an essential reference both within and outside the classroom. The book begins with the fundamental description on the topological phases of matter such as one, two- and three-dimensional topological insulators, and methods and tools for topological material's investigations, topological insulators for advanced optoelectronic devices, topological superconductors, saturable absorber and in plasmonic devices. Advanced Topological Insulators provides researchers and graduate students with the physical understanding and mathematical tools needed to embark on research in this rapidly evolving field.


Applications of Laser Ablation

Applications of Laser Ablation

Author: Dongfang Yang

Publisher: BoD – Books on Demand

Published: 2016-12-21

Total Pages: 430

ISBN-13: 9535128116

DOWNLOAD EBOOK

Laser ablation refers to the phenomenon in which a low wavelength and short pulse (ns-fs) duration of laser beam irradiates the surface of a target to induce instant local vaporization of the target material generating a plasma plume consisting of photons, electrons, ions, atoms, molecules, clusters, and liquid or solid particles. This book covers various aspects of using laser ablation phenomenon for material processing including laser ablation applied for the deposition of thin films, for the synthesis of nanomaterials, and for the chemical compositional analysis and surface modification of materials. Through the 18 chapters written by experts from international scientific community, the reader will have access to the most recent research and development findings on laser ablation through original research studies and literature reviews.


Photoconductivity

Photoconductivity

Author: N V Joshi

Publisher: Routledge

Published: 2017-10-02

Total Pages: 330

ISBN-13: 1351424874

DOWNLOAD EBOOK

Featuring detector technology capable of sensing even a few photons, this valuablereference guide provides criteria for selecting techniques and equipment appropriate tovarious types of faint signals. It highlights many important facets of photoconductivityand photodetection, including the measurement of weak photosignals in the presence ofnoise ... statistics relating to the creation, annihilation, and transport of charge carriers... and time-dependent behavior, photoquenching, negative photoconductivity, andphotosensitivity.Complete with more than 125 diagrams and tables, Photoconductivity: Art,Science, and Technology gives special attention to modem two-dimensionalphotodetectors . . . describes various configurations for experimental techniques inphotoconductivity measurements . . . surveys band structure properties, with usefulreference to such contemporary structures as n-i-p-i and modulation doped materials .. .illustrates the concept of noise in photoconductors and its role in detector technology .. .and observes unusual photoconducting properties in diluted magnetic semiconductors.Photoconductivity: Art, Science, and Technology serves as an indispensableresource for optical, electrical, laser, and aerospace engineers, physicists, materialsscientists, photonic scientists, and graduate students interested in these disciplines.


Topological Insulators

Topological Insulators

Author: Frank Ortmann

Publisher: John Wiley & Sons

Published: 2015-06-29

Total Pages: 434

ISBN-13: 3527337024

DOWNLOAD EBOOK

There are only few discoveries and new technologies in physical sciences that have the potential to dramatically alter and revolutionize our electronic world. Topological insulators are one of them. The present book for the first time provides a full overview and in-depth knowledge about this hot topic in materials science and condensed matter physics. Techniques such as angle-resolved photoemission spectrometry (ARPES), advanced solid-state Nuclear Magnetic Resonance (NMR) or scanning-tunnel microscopy (STM) together with key principles of topological insulators such as spin-locked electronic states, the Dirac point, quantum Hall effects and Majorana fermions are illuminated in individual chapters and are described in a clear and logical form. Written by an international team of experts, many of them directly involved in the very first discovery of topological insulators, the book provides the readers with the knowledge they need to understand the electronic behavior of these unique materials. Being more than a reference work, this book is essential for newcomers and advanced researchers working in the field of topological insulators.


Materials for Optoelectronics

Materials for Optoelectronics

Author: Maurice Quillec

Publisher: Springer Science & Business Media

Published: 1996-01-31

Total Pages: 404

ISBN-13: 9780792396659

DOWNLOAD EBOOK

Optoelectronics ranks one of the highest increasing rates among the different industrial branches. This activity is closely related to devices which are themselves extremely dependent on materials. Indeed, the history of optoelectronic devices has been following closely that of the materials. KLUWER Academic Publishers has thus rightly identified "Materials for Optoelectronics" as a good opportunity for a book in the series entitled "Electronic Materials; Science and Technology". Although a sound background in solid state physics is recommended, the authors have confined their contribution to a graduate student level, and tried to define any concept they use, to render the book as a whole as self-consistent as possible. In the first section the basic aspects are developed. Here, three chapters consider semiconductor materials for optoelectronics under various aspects. Prof. G. E. Stillman begins with an introduction to the field from the point of view of the optoelectronic market. Then he describes how III-V materials, especially the Multi Quantum Structures meet the requirements of optoelectronic functions, including the support of microelectronics for optoelectronic integrated circuits. In chapter 2, Prof.


Introduction to Spintronics

Introduction to Spintronics

Author: Supriyo Bandyopadhyay

Publisher: CRC Press

Published: 2008-03-20

Total Pages: 526

ISBN-13: 1420004743

DOWNLOAD EBOOK

Using spin to replace or augment the role of charge in signal processing devices, computing systems and circuits may improve speed, power consumption, and device density in some cases—making the study of spinone of the fastest-growing areas in micro- and nanoelectronics. With most of the literature on the subject still highly advanced and heavily theoretical, the demand for a practical introduction to the concepts relating to spin has only now been filled. Explains effects such as giant magnetoresistance, the subject of the 2007 Nobel Prize in physics Introduction to Spintronics is an accessible, organized, and progressive presentation of the quantum mechanical concept of spin. The authors build a foundation of principles and equations underlying the physics, transport, and dynamics of spin in solid state systems. They explain the use of spin for encoding qubits in quantum logic processors; clarify how spin-orbit interaction forms the basis for certain spin-based devices such as spintronic field effect transistors; and discuss the effects of magnetic fields on spin-based device performance. Covers active hybrid spintronic devices, monolithic spintronic devices, passive spintronic devices, and devices based on the giant magnetoresistance effect The final chapters introduce the burgeoning field of spin-based reversible logic gates, spintronic embodiments of quantum computers, and other topics in quantum mechanics that have applications in spintronics. An Introduction to Spintronics provides the knowledge and understanding of the field needed to conduct independent research in spintronics.


Two-Dimensional Transition-Metal Dichalcogenides

Two-Dimensional Transition-Metal Dichalcogenides

Author: Alexander V. Kolobov

Publisher: Springer

Published: 2016-07-26

Total Pages: 545

ISBN-13: 3319314505

DOWNLOAD EBOOK

This book summarizes the current status of theoretical and experimental progress in 2 dimensional graphene-like monolayers and few-layers of transition metal dichalcogenides (TMDCs). Semiconducting monolayer TMDCs, due to the presence of a direct gap, significantly extend the potential of low-dimensional nanomaterials for applications in nanoelectronics and nano-optoelectronics as well as flexible nano-electronics with unprecedented possibilities to control the gap by external stimuli. Strong quantum confinement results in extremely high exciton binding energies which forms an interesting platform for both fundamental studies and device applications. Breaking of spatial inversion symmetry in monolayers results in strong spin-valley coupling potentially leading to their use in valleytronics. Starting with the basic chemistry of transition metals, the reader is introduced to the rich field of transition metal dichalcogenides. After a chapter on three dimensional crystals and a description of top-down and bottom-up fabrication methods of few-layer and single layer structures, the fascinating world of two-dimensional TMDCs structures is presented with their unique atomic, electronic, and magnetic properties. The book covers in detail particular features associated with decreased dimensionality such as stability and phase-transitions in monolayers, the appearance of a direct gap, large binding energy of 2D excitons and trions and their dynamics, Raman scattering associated with decreased dimensionality, extraordinarily strong light-matter interaction, layer-dependent photoluminescence properties, new physics associated with the destruction of the spatial inversion symmetry of the bulk phase, spin-orbit and spin-valley couplings. The book concludes with chapters on engineered heterostructures and device applications such as a monolayer MoS2 transistor. Considering the explosive interest in physics and applications of two-dimensional materials, this book is a valuable source of information for material scientists and engineers working in the field as well as for the graduate students majoring in materials science.


Hybrid Organic-Inorganic Perovskites

Hybrid Organic-Inorganic Perovskites

Author: Aline Ferreira

Publisher: John Wiley & Sons

Published: 2020-10-19

Total Pages: 290

ISBN-13: 3527344314

DOWNLOAD EBOOK

Hybrid organic-inorganic perovskites (HOIPs) have attracted substantial interest due to their chemical variability, structural diversity and favorable physical properties the past decade. This materials class encompasses other important families such as formates, azides, dicyanamides, cyanides and dicyanometallates. The book summarizes the chemical variability and structural diversity of all known hybrid organic-inorganic perovskites subclasses including halides, azides, formates, dicyanamides, cyanides and dicyanometallates. It also presents a comprehensive account of their intriguing physical properties, including photovoltaic, optoelectronic, dielectric, magnetic, ferroelectric, ferroelastic and multiferroic properties. Moreover, the current challenges and future opportunities in this exciting field are also been discussed. This timely book shows the readers a complete landscape of hybrid organic-inorganic pervoskites and associated multifuctionalities.


Nanozymes: Next Wave of Artificial Enzymes

Nanozymes: Next Wave of Artificial Enzymes

Author: Xiaoyu Wang

Publisher: Springer

Published: 2016-07-27

Total Pages: 134

ISBN-13: 3662530686

DOWNLOAD EBOOK

This book describes the fundamental concepts, the latest developments and the outlook of the field of nanozymes (i.e., the catalytic nanomaterials with enzymatic characteristics). As one of today’s most exciting fields, nanozyme research lies at the interface of chemistry, biology, materials science and nanotechnology. Each of the book’s six chapters explores advances in nanozymes. Following an introduction to the rise of nanozymes research in the course of research on natural enzymes and artificial enzymes in Chapter 1, Chapters 2 through 5 discuss different nanomaterials used to mimic various natural enzymes, from carbon-based and metal-based nanomaterials to metal oxide-based nanomaterials and other nanomaterials. In each of these chapters, the nanomaterials’ enzyme mimetic activities, catalytic mechanisms and key applications are covered. In closing, Chapter 6 addresses the current challenges and outlines further directions for nanozymes. Presenting extensive information on nanozymes and supplemented with a wealth of color illustrations and tables, the book offers an ideal guide for readers from disparate areas, including analytical chemistry, materials science, nanoscience and nanotechnology, biomedical and clinical engineering, environmental science and engineering, green chemistry, and novel catalysis.


The Handbook on Optical Constants of Metals

The Handbook on Optical Constants of Metals

Author: Sadao Adachi

Publisher: World Scientific

Published: 2012

Total Pages: 684

ISBN-13: 9814405949

DOWNLOAD EBOOK

Introduction -- Metal and semimetal elements -- Transition-metal carbides and nitrides -- Metallic silicides -- High-Tc superconductors.