This book consists of the research, design and implementation, from sizing to layout with parasitic extraction and yield estimation, of a low-power, low-noise amplifier for biomedical and healthcare applications of bio-potential signals, particularly focusing on the electromyography and electrooculography. These signals usually operate in different broadbands, yet follow an impulse-shape transmission, hence being suitable to be applied and detected by the same receiver.
The purpose of this book is to provide a complete working knowledge of the Complementary Metal-Oxide Semiconductor (CMOS) analog and mixed-signal circuit design, which can be applied for System on Chip (SOC) or Application-Specific Standard Product (ASSP) development. It begins with an introduction to the CMOS analog and mixed-signal circuit design with further coverage of basic devices, such as the Metal-Oxide Semiconductor Field-Effect Transistor (MOSFET) with both long- and short-channel operations, photo devices, fitting ratio, etc. Seven chapters focus on the CMOS analog and mixed-signal circuit design of amplifiers, low power amplifiers, voltage regulator-reference, data converters, dynamic analog circuits, color and image sensors, and peripheral (oscillators and Input/Output [I/O]) circuits, and Integrated Circuit (IC) layout and packaging. Features: Provides practical knowledge of CMOS analog and mixed-signal circuit design Includes recent research in CMOS color and image sensor technology Discusses sub-blocks of typical analog and mixed-signal IC products Illustrates several design examples of analog circuits together with layout Describes integrating based CMOS color circuit
Wearable antennas are meant to be incorporated as part of clothing or placed close to the body. Wearable antennas can be used in countless communication applications including tracking and navigation, medical applications, imaging and detection, RFID, mobile computing and public safety. The book "Novel Wearable Antennas for Communication and Medical Systems" discusses the challenges and technology to develop compact, efficient, wearable antennas. The book begins by presenting elementary communication, electromagnetics and antenna topics needed for engineers and students that do not have a background in design, principles, and features of antennas, printed antennas, wearable antennas, and compact antennas for communication and medical applications. Throughout the book each chapter also covers sufficient mathematical details, physical details and explanations to enable the reader to follow and understand the topics presented. New topics and design methods in the area of wearable antennas, metamaterial antennas, active printed antennas and fractal antennas for communication and medical systems are presented and discussed throughout the book. The book presents computed and measured results in the vicinity of the human body. The book also covers topics such as RF measurement techniques, measurement setups and design considerations. The antennas developed and analyzed in this book were designed and optimized by using 3D full-wave electromagnetics software.
From past decades, Computational intelligence embraces a number of nature-inspired computational techniques which mainly encompasses fuzzy sets, genetic algorithms, artificial neural networks and hybrid neuro-fuzzy systems to address the computational complexities such as uncertainties, vagueness and stochastic nature of various computational problems practically. At the same time, Intelligent Control systems are emerging as an innovative methodology which is inspired by various computational intelligence process to promote a control over the systems without the use of any mathematical models. To address the effective use of intelligent control in Computational intelligence systems, International Conference on Intelligent Computing, Information and Control Systems (ICICCS 2019) is initiated to encompass the various research works that helps to develop and advance the next-generation intelligent computing and control systems. This book integrates the computational intelligence and intelligent control systems to provide a powerful methodology for a wide range of data analytics issues in industries and societal applications. The recent research advances in computational intelligence and control systems are addressed, which provide very promising results in various industry, business and societal studies. This book also presents the new algorithms and methodologies for promoting advances in common intelligent computing and control methodologies including evolutionary computation, artificial life, virtual infrastructures, fuzzy logic, artificial immune systems, neural networks and various neuro-hybrid methodologies. This book will be pragmatic for researchers, academicians and students dealing with mathematically intransigent problems. It is intended for both academicians and researchers in the field of Intelligent Computing, Information and Control Systems, along with the distinctive readers in the fields of computational and artificial intelligence to gain more knowledge on Intelligent computing and control systems and their real-world applications.
This book describes the technology used for effective sensing of our physical world and intelligent processing techniques for sensed information, which are essential to the success of Internet of Things (IoT). The authors provide a multidisciplinary view of sensor technology from materials, process, circuits, and big data domains and showcase smart sensor systems in real applications including smart home, transportation, medical, environmental, agricultural, etc. Unlike earlier books on sensors, this book provides a “global” view on smart sensors covering abstraction levels from device, circuit, systems, and algorithms.
This book presents select proceedings of the International Conference on Micro and Nanoelectronics Devices, Circuits and Systems (MNDCS-2023). The book includes cutting-edge research papers in the emerging fields of micro and nanoelectronics devices, circuits, and systems from experts working in these fields over the last decade. The book is a unique collection of chapters from different areas with a common theme and is immensely useful to academic researchers and practitioners in the industry who work in this field.
The analysis and prediction of nonlinear behavior in electronic circuits has long been a topic of concern for analog circuit designers. The recent explosion of interest in portable electronics such as cellular telephones, cordless telephones and other applications has served to reinforce the importance of these issues. The need now often arises to predict and optimize the distortion performance of diverse electronic circuit configurations operating in the gigahertz frequency range, where nonlinear reactive effects often dominate. However, there have historically been few sources available from which design engineers could obtain information on analysis tech niques suitable for tackling these important problems. I am sure that the analog circuit design community will thus welcome this work by Dr. Wambacq and Professor Sansen as a major contribution to the analog circuit design literature in the area of distortion analysis of electronic circuits. I am personally looking forward to hav ing a copy readily available for reference when designing integrated circuits for communication systems.
This book covers two most important applications of smart sensors, namely bio-health sensing and environmental monitoring. The approach taken is holistic and covers the complete scope of the subject matter from the principles of the sensing mechanism, through device physics, circuit and system implementation techniques, and energy issues to wireless connectivity solutions. It is written at a level suitable mainly for post-graduate level researchers interested in practical applications. The chapters are independent but complementary to each other, and the book works within the wider perspective of essential smart sensors for the Internet of Things (IoT). This is the second of three books based on the Integrated Smart Sensors research project, which describe the development of innovative devices, circuits, and system-level enabling technologies. The aim of the project was to develop common platforms on which various devices and sensors can be loaded, and to create systems offering significant improvements in information processing speed, energy usage, and size. This book contains substantial reference lists and over 150 figures, introducing the reader to the subject in a tutorial style whilst also addressing state-of-the-art research results, allowing it to be used as a guide for starting researchers.
This book constitutes the refereed proceedings of the 7th International Conference on Computational Data and Social Networks, CSoNet 2018, held in Shanghai, China, in December 2018. The 44 revised full papers presented in this book toghether with 2 extended abstracts, were carefully reviewed and selected from 106 submissions. The topics cover the fundamental background, theoretical technology development, and real-world applications associated with complex and data network analysis, minimizing in uence of rumors on social networks, blockchain Markov modelling, fraud detection, data mining, internet of things (IoT), internet of vehicles (IoV), and others.