Selected, peer reviewed papers from the IV Euro-Asian Symposium “Trends in MAGnetism” Nanospintronics, EASTMAG – 2010, June 28 – July 2, 2010, Ekaterinburg, Russia
During August 24-27, 1993, approximately 60 scientists from the Americas, Europe and Japan, gathered in the city of Guanajuato, in the state of Guanajuato, Mexico, at the II Latin American Workshop on Magnetism, Magnetic Materials and their Applications. The group of scientists converging into the beautiful city of Guanajuato had come from Argentina, Chile, Brazil, Venezuela, Cuba, several places in Mexico, U. S. A. , Japan, Spain, France, Italy, Germany, Austria, Switzerland, and Denmark. The event attested to the success of the previous Workshop on Magnetism, Magnetic Materials and their Applications, held in Havana, Cuba, in 1991, as well as to the interest, level of activity and quality of the work being carried out in Latin America in the area of magnetism and magnetic materials. Equally important to everyone present was the fact that we had come to honor a friend, Professor L. M. Falicov, on his sixtieth birthday. The choice of a Latin American Workshop on magnetism as a Festschrift for Leo Falicov was, in our opinion, quite appropriate not only because of Leo's strong ties to Latin America, but also because of his superb contributions to science, and in particular, to magnetism. Professor Falicov was born in Buenos Aires, Argentina, where he spent a good part of his formative years.
This book provides comprehensive coverage of the most recent progress and developments in the field of magnetic nanoparticles, with special emphasis on new materials design approaches for magnetic nanoarchitectures, advanced characterization techniques, and a wide range of applications areas including permanent magnets, biomedicine, and life sciences. The book also features an exhaustive section on fundamentals, covering single particle effects, surface effects, and interparticle interactions. The book delivers a strong focus throughout on the multidisciplinarity of the subject spanning physics, chemistry, engineering, biology, medicine, and environmental science. This forward-looking contributed volume highlights future perspectives and areas of emerging research, and will be of great interest to advanced undergraduates, as well as researchers in academia and industry.
Combining the contemporary knowledge from widely scattered sources, this is a much-needed and comprehensive overview of the field. In maintaining a balance between theory and experiment, the book guides both advanced students and specialists to this research area. Topical reviews written by the foremost scientists explain recent trends and advances, focusing on the correlations between electronic structure and magnetic properties. The book spans recent trends in magnetism for molecules -- as well as inorganic-based materials, with an emphasis on new phenomena being explored from both experimental and theoretical viewpoints with the aim of understanding magnetism on the atomic scale. The volume helps readers evaluate their own experimental observations and serves as a basis for the design of new magnetic materials. Topics covered include: * Metallocenium Salts of Radical Anion Bis-(dichalcogenate) metalates * Chiral Molecule-Based Magnets * Cooperative Magnetic Behavior in Metal-Dicyanamide Complexes * Lanthanide Ions in Molecular Exchange Coupled Systems * Monte Carlo Simulation * Metallocene-Based Magnets * Magnetic Nanoporous Molecular Materials A unique reference work, indispensable for everyone concerned with the phenomena of magnetism.
Handbook of Magnetic Materials, Volume 29, highlights new advances in the field, with this new volume presenting interesting chapters written by an international board of authors on topics such as spin-orbit torque. - Provides the authority and expertise of leading contributors from an international board of authors - Presents the latest release in the Handbook of Magnetic Materials series
Volume 13 of the Handbook of Magnetic Materials, as the preceding volumes, has a dual purpose. As a textbook it is intended to be of assistance to those who wish to be introduced to a given topic in the field of magnetism without the need to read the vast amount of literature published. As a work of reference it is intended for scientists active in magnetism research. To this dual purpose, Volume 13 of the Handbook is composed of topical review articles written by leading authorities. In each of these articles an extensive description is given in graphical as well as in tabular form, much emphasis being placed on the discussion of the experimental material in the framework of physics, chemistry and material science. In Chapter 1 of this volume a general review of the experimental work on interlayer exchange coupling is presented along with a discussion of the current understanding of this field. There exists an extensive amount of scientific efforts devoted to 4f and 5f systems, including experimental and theoretical, as well as basic and applied research. Chapter 2 aims at reviewing a part of these efforts from the viewpoint of microscopic theory. Special attention is paid to the many new developments in the field. One of the intentions is to bring to the fore the darker areas of DFT theory applications. A review of novel experimental results and first-principle energy-band calculations of MOKE spectra will be presented in Chapter 3. Conventional co-operative phenomena, such as long-range order and elementary excitation, have realisations in nonmagnetic situations. This applies also to the phenomena of geometrical frustration. In Chapter 4 this topic is addressed by developing the basic principles underlying the magnetic phenomena.
This book is a comprehensive treatment of fine particle magnetism and the magnetic properties of rocks. Starting from atomic magnetism and magneotistic principles, the authors explain why domains and micromagnetic structures form in ferrmagnetic crystals and how these lead to magnetic memory in the form of thermal, chemical and other remanent magnetizations. This book will be of value to graduate students and researchers in geophysics and geology, particularly in palemagnetism and rock magnetism, as well as physicists and electrical engineers interested in fine-particle magnetism and magnetic recording.
Among the branches of classical physics, electromagnetism is the domain which experiences the most spectacular development, both in its fundamental and practical aspects. The quantum corrections which generate non-linear terms of the standard Maxwell equations, their specific form in curved spaces, whose predictions can be confronted with the cosmic polarization rotation, or the topological model of electromagnetism, constructed with electromagnetic knots, are significant examples of recent theoretical developments. The similarities of the Sturm-Liouville problems in electromagnetism and quantum mechanics make possible deep analogies between the wave propagation in waveguides, ballistic electron movement in mesoscopic conductors and light propagation on optical fibers, facilitating a better understanding of these topics and fostering the transfer of techniques and results from one domain to another. Industrial applications, like magnetic refrigeration at room temperature or use of metamaterials for antenna couplers and covers, are of utmost practical interest. So, this book offers an interesting and useful reading for a broad category of specialists.
The study of electromagnetic fields in the treatment of various diseases is not a new one; however, we are still learning how magnetic fields impact the human body and its organs. Many novel magnetic materials and technologies could potentially transform medicine. Magnetic Materials and Technologies for Medical Applications explores these current and emerging technologies. Beginning with foundational knowledge on the basics of magnetism, this book then details the approaches and methods used in the creation of novel magnetic materials and devices. This book also discusses current technologies and applications, as well as the commercial aspects of introducing new technologies to the field. This book serves as an excellent introduction for early career researchers or a reference to more experienced researchers who wish to stay abreast of current trends and developing technologies in the field. This book could also be used by clinicians working in medicine and companies interested in establishing new medical technologies. Each chapter provides novel tasks for future scientific and technology research studies. - Outlines the basics of magnetism for enhanced understanding of its applications in medicine - Covers novel magnetic devices as well as technologies still under development, including magnetic brain stimulation, biosensors, and nanoparticles for drug delivery - Explores commercial opportunities and obstacles to market entry for new magnetic materials and technologies for the medical field
This book, in the broadest sense, is an application of quantum mechanics and statistical mechanics to the field of magnetism. Under certain well described circumstances, an immensely large number of electrons moving in the solid state of matter will collectively produce permanent magnetism. Permanent magnets are of fundamental interest, and magnetic materials are also of great practical importance as they provide a large field of technological applications. The physical details describing the many electron problem of magnetism are presented in this book on the basis of the local density functional approximation. The emphasis is on realistic magnets, for which the equations describing the many electron problem can only be solved by using computers. The great, recent and continuing improvements of computers are, to a large extent, responsible for the progress in the field. Along with a detailed introduction to the density functional theory, this book presents representative computational methods and provides the reader with a complete computer programme for the determination of the electronic structure of a magnet on a PC. A large part of the book is devoted to a detailed treatment of the connections between electronic properties and magnetism, and how they differ in the various known magnetic systems. Current trends are exposed and explained for a large class of alloys and compounds. The modern field of artificially layered systems - known as multilayers - and their industrial applications are dealt with in detail. Finally, an attempt is made to relate the rich thermodynamic properties of magnets to the ab initio results originating from the electronic structure.