This volume of Pharmacochemistry Library comprises the text of invited lectures presented at the 11th Noordwijkerhout-Camerino Symposium Trends in Drug Research, held in Noordwijkerhout, The Netherlands, from 11-15 May 1997. In the programme attention has been given to the generation of new biological target systems and the generation of new lead molecules, with presentations on e.g. combinatorial chemistry, compound libraries, database search, high throughput screening and molecular biology. Other topics discussed were the perspectives for new medicines for the gastro-intestinal tract, the major developments in the search for effective anti-HIV drugs and new aspects in synthetic approaches. In a special session three topics which currently draw much attention were discussed: How to deal with the major problem of resistance against antimirobial agents? Can the apoptosis mechanism be used as a drug target? Is the newly observed phenomenon of inverse agonism a general principle and has it consequences for drug development (and use?)
Improving and Accelerating Therapeutic Development for Nervous System Disorders is the summary of a workshop convened by the IOM Forum on Neuroscience and Nervous System Disorders to examine opportunities to accelerate early phases of drug development for nervous system drug discovery. Workshop participants discussed challenges in neuroscience research for enabling faster entry of potential treatments into first-in-human trials, explored how new and emerging tools and technologies may improve the efficiency of research, and considered mechanisms to facilitate a more effective and efficient development pipeline. There are several challenges to the current drug development pipeline for nervous system disorders. The fundamental etiology and pathophysiology of many nervous system disorders are unknown and the brain is inaccessible to study, making it difficult to develop accurate models. Patient heterogeneity is high, disease pathology can occur years to decades before becoming clinically apparent, and diagnostic and treatment biomarkers are lacking. In addition, the lack of validated targets, limitations related to the predictive validity of animal models - the extent to which the model predicts clinical efficacy - and regulatory barriers can also impede translation and drug development for nervous system disorders. Improving and Accelerating Therapeutic Development for Nervous System Disorders identifies avenues for moving directly from cellular models to human trials, minimizing the need for animal models to test efficacy, and discusses the potential benefits and risks of such an approach. This report is a timely discussion of opportunities to improve early drug development with a focus toward preclinical trials.
To explore the role of the National Institutes of Health (NIH) in innovative drug development and its impact on patient access, the Board on Health Care Services and the Board on Health Sciences Policy of the National Academies jointly hosted a public workshop on July 24â€"25, 2019, in Washington, DC. Workshop speakers and participants discussed the ways in which federal investments in biomedical research are translated into innovative therapies and considered approaches to ensure that the public has affordable access to the resulting new drugs. This publication summarizes the presentations and discussions from the workshop.
Basic Principles of Drug Discovery and Development presents the multifaceted process of identifying a new drug in the modern era, which requires a multidisciplinary team approach with input from medicinal chemists, biologists, pharmacologists, drug metabolism experts, toxicologists, clinicians, and a host of experts from numerous additional fields. Enabling technologies such as high throughput screening, structure-based drug design, molecular modeling, pharmaceutical profiling, and translational medicine are critical to the successful development of marketable therapeutics. Given the wide range of disciplines and techniques that are required for cutting edge drug discovery and development, a scientist must master their own fields as well as have a fundamental understanding of their collaborator's fields. This book bridges the knowledge gaps that invariably lead to communication issues in a new scientist's early career, providing a fundamental understanding of the various techniques and disciplines required for the multifaceted endeavor of drug research and development. It provides students, new industrial scientists, and academics with a basic understanding of the drug discovery and development process. The fully updated text provides an excellent overview of the process and includes chapters on important drug targets by class, in vitro screening methods, medicinal chemistry strategies in drug design, principles of in vivo pharmacokinetics and pharmacodynamics, animal models of disease states, clinical trial basics, and selected business aspects of the drug discovery process. - Provides a clear explanation of how the pharmaceutical industry works, as well as the complete drug discovery and development process, from obtaining a lead, to testing the bioactivity, to producing the drug, and protecting the intellectual property - Includes a new chapter on the discovery and development of biologics (antibodies proteins, antibody/receptor complexes, antibody drug conjugates), a growing and important area of the pharmaceutical industry landscape - Features a new section on formulations, including a discussion of IV formulations suitable for human clinical trials, as well as the application of nanotechnology and the use of transdermal patch technology for drug delivery - Updated chapter with new case studies includes additional modern examples of drug discovery through high through-put screening, fragment-based drug design, and computational chemistry
Infectious diseases are a global hazard that puts every nation and every person at risk. The recent SARS outbreak is a prime example. Knowing neither geographic nor political borders, often arriving silently and lethally, microbial pathogens constitute a grave threat to the health of humans. Indeed, a majority of countries recently identified the spread of infectious disease as the greatest global problem they confront. Throughout history, humans have struggled to control both the causes and consequences of infectious diseases and we will continue to do so into the foreseeable future. Following up on a high-profile 1992 report from the Institute of Medicine, Microbial Threats to Health examines the current state of knowledge and policy pertaining to emerging and re-emerging infectious diseases from around the globe. It examines the spectrum of microbial threats, factors in disease emergence, and the ultimate capacity of the United States to meet the challenges posed by microbial threats to human health. From the impact of war or technology on disease emergence to the development of enhanced disease surveillance and vaccine strategies, Microbial Threats to Health contains valuable information for researchers, students, health care providers, policymakers, public health officials. and the interested public.
On March 3-4, 2016, the National Academies of Sciences, Engineering, and Medicine's Forum on Neuroscience and Nervous System Disorders held a workshop in Washington, DC, bringing together key stakeholders to discuss opportunities for improving the integrity, efficiency, and validity of clinical trials for nervous system disorders. Participants in the workshop represented a range of diverse perspectives, including individuals not normally associated with traditional clinical trials. The purpose of this workshop was to generate discussion about not only what is feasible now, but what may be possible with the implementation of cutting-edge technologies in the future.
The very rapid pace of advances in biomedical research promises us a wide range of new drugs, medical devices, and clinical procedures. The extent to which these discoveries will benefit the public, however, depends in large part on the methods we choose for developing and testing them. Modern Methods of Clinical Investigation focuses on strategies for clinical evaluation and their role in uncovering the actual benefits and risks of medical innovation. Essays explore differences in our current systems for evaluating drugs, medical devices, and clinical procedures; health insurance databases as a tool for assessing treatment outcomes; the role of the medical profession, the Food and Drug Administration, and industry in stimulating the use of evaluative methods; and more. This book will be of special interest to policymakers, regulators, executives in the medical industry, clinical researchers, and physicians.
Perceptions that the pace of new-drug development has slowed and that the pharmaceutical industry is highly profitable have sparked concerns that significant problems loom for future drug development. This Congressional Budget Office (CBO) study-prepared at the request of the Senate Majority Leader-reviews basic facts about the drug industry's recent spending on research and development (R&D) and its output of new drugs. The study also examines issues relating to the costs of R&D, the federal government's role in pharmaceutical research, the performance of the pharmaceutical industry in developing innovative drugs, and the role of expected profits in private firms' decisions about investing in drug R&D. In keeping with CBO's mandate to provide objective, impartial analysis, the study makes no recommendations. David H. Austin prepared this report under the supervision of Joseph Kile and David Moore. Colin Baker provided valuable consultation...
Clinical trials are used to elucidate the most appropriate preventive, diagnostic, or treatment options for individuals with a given medical condition. Perhaps the most essential feature of a clinical trial is that it aims to use results based on a limited sample of research participants to see if the intervention is safe and effective or if it is comparable to a comparison treatment. Sample size is a crucial component of any clinical trial. A trial with a small number of research participants is more prone to variability and carries a considerable risk of failing to demonstrate the effectiveness of a given intervention when one really is present. This may occur in phase I (safety and pharmacologic profiles), II (pilot efficacy evaluation), and III (extensive assessment of safety and efficacy) trials. Although phase I and II studies may have smaller sample sizes, they usually have adequate statistical power, which is the committee's definition of a "large" trial. Sometimes a trial with eight participants may have adequate statistical power, statistical power being the probability of rejecting the null hypothesis when the hypothesis is false. Small Clinical Trials assesses the current methodologies and the appropriate situations for the conduct of clinical trials with small sample sizes. This report assesses the published literature on various strategies such as (1) meta-analysis to combine disparate information from several studies including Bayesian techniques as in the confidence profile method and (2) other alternatives such as assessing therapeutic results in a single treated population (e.g., astronauts) by sequentially measuring whether the intervention is falling above or below a preestablished probability outcome range and meeting predesigned specifications as opposed to incremental improvement.
Thanks to remarkable advances in modern health care attributable to science, engineering, and medicine, it is now possible to cure or manage illnesses that were long deemed untreatable. At the same time, however, the United States is facing the vexing challenge of a seemingly uncontrolled rise in the cost of health care. Total medical expenditures are rapidly approaching 20 percent of the gross domestic product and are crowding out other priorities of national importance. The use of increasingly expensive prescription drugs is a significant part of this problem, making the cost of biopharmaceuticals a serious national concern with broad political implications. Especially with the highly visible and very large price increases for prescription drugs that have occurred in recent years, finding a way to make prescription medicinesâ€"and health care at largeâ€"more affordable for everyone has become a socioeconomic imperative. Affordability is a complex function of factors, including not just the prices of the drugs themselves, but also the details of an individual's insurance coverage and the number of medical conditions that an individual or family confronts. Therefore, any solution to the affordability issue will require considering all of these factors together. The current high and increasing costs of prescription drugsâ€"coupled with the broader trends in overall health care costsâ€"is unsustainable to society as a whole. Making Medicines Affordable examines patient access to affordable and effective therapies, with emphasis on drug pricing, inflation in the cost of drugs, and insurance design. This report explores structural and policy factors influencing drug pricing, drug access programs, the emerging role of comparative effectiveness assessments in payment policies, changing finances of medical practice with regard to drug costs and reimbursement, and measures to prevent drug shortages and foster continued innovation in drug development. It makes recommendations for policy actions that could address drug price trends, improve patient access to affordable and effective treatments, and encourage innovations that address significant needs in health care.