Crop wild relatives (CWR) are species closely related to crop plants which can contribute beneficial traits such as pest or disease resistance and yield improvement. Through an examination of national, regional and global context of CWR, this text presents methodologies and case studies that provide recommendations for global conservation and use.
Crop Wild Relatives (CWRs) are a key asset for agrobiodiversity, sustainable agriculture and food security overall. CRWs might contain genes for useful traits such as nutritional quality, resistance to pests and diseases, resource efficiency, and adaptability to extreme weather conditions. Their inherent genetic diversity together with the associated diversity of microbiota is a vast resource for developing more productive, nutritious, and resilient crop varieties and for diversifying farming systems. Despite their value, a wide range of CWRs are threatened and face pressures, e.g., from intensive agriculture, urbanization, pollution, and the effects of climate change. At the same time, their conservation and deployment in breeding remain still scarce. As a consequence, knowledge is lacking about the diversity that exists and precisely how that diversity may be used for crop improvement and in farming.
Wild Germplasm for Genetic Improvement in Crop Plants addresses the need for an integrated reference on a wide variety of crop plants, facilitating comparison and contrast, as well as providing relevant relationships for future research and development. The book presents the genetic and natural history value of wild relatives, covers what wild relatives exist, explores the existing knowledge regarding specific relatives and the research surrounding them and identifies knowledge gaps. As understanding the role of crop wild relatives in plant breeding expands the genetic pool for abiotic and biotic stress resistance, this is an ideal reference on this important topic. - Provides a single-volume resource to important crops for accessible comparison and research - Explores both conventional and molecular approaches to breeding for targeted traits and allows for expanded genetic variability - Guides the development of hybrids for germplasm with increased tolerance to biotic and abiotic stresses
Crop wild relatives (CWR) are plant species which are more or less closely related to crops. They are a vital resource by providing a pool of genetic variation that can be used in breeding new and better adapted varieties of crops that are resistant to stress, disease, drought and other factors. They will be increasingly important in allowing crops to adapt to the impacts of climate, thus safeguarding future agricultural production. Until recently, the main conservation strategy adopted for CWR has been ex situ - through the maintenance of samples as seed or vegetative material in various kinds of genebank or other facilities. Now the need to conserve CWR in their natural surroundings (in situ) is increasingly recognized. Recent research co-ordinated by Bioversity International has produced a wealth of information on good practices and lessons learned for their effective conservation. This book captures the important practical experiences of countries participating in this work and describes them for the wider conservation community. It includes case studies and examples from Armenia, Bolivia, Madagascar, Sri Lanka and Uzbekistan, which are important centres of diversity for crop wild relatives, and covers four geographical regions - the Caucasus, South America, Africa and the Asia-Pacific Region. It provides practical, relevant information and guidance for the scaling-up of actions targeting CWR conservation around the world.
Genetically engineered (GE) crops were first introduced commercially in the 1990s. After two decades of production, some groups and individuals remain critical of the technology based on their concerns about possible adverse effects on human health, the environment, and ethical considerations. At the same time, others are concerned that the technology is not reaching its potential to improve human health and the environment because of stringent regulations and reduced public funding to develop products offering more benefits to society. While the debate about these and other questions related to the genetic engineering techniques of the first 20 years goes on, emerging genetic-engineering technologies are adding new complexities to the conversation. Genetically Engineered Crops builds on previous related Academies reports published between 1987 and 2010 by undertaking a retrospective examination of the purported positive and adverse effects of GE crops and to anticipate what emerging genetic-engineering technologies hold for the future. This report indicates where there are uncertainties about the economic, agronomic, health, safety, or other impacts of GE crops and food, and makes recommendations to fill gaps in safety assessments, increase regulatory clarity, and improve innovations in and access to GE technology.
Food systems involve a range of activities concerning food production, processing, distribution, marketing and trade, preparation, consumption and disposal. They encompass the path of food from the farm to the dinner table, meeting the food and nutritional needs of a nation. When such systems do so without sacrificing the needs of future generations, they are referred to as “Sustainable Food Systems.” The natural and physical environment, infrastructure, institutions, society and culture, and policies and regulations within which they operate, as well as the technologies they adopt, shape these systems’ outcomes. Making food systems more sustainable is a key priority for all nations, and Sri Lanka is no exception. Food systems deliver optimal performance when the policy and regulatory environment is conducive, institutions are supportive, and a combination of agricultural research investments and an efficient extension system generates the technologies and scientific evidence required for sound policymaking and agenda setting. Further, agricultural research can generate essential findings, technologies and policies for sustainable agricultural development – across disciplines, sectors and stakeholder groups. This book shares valuable insights into research conducted in the broad food and agriculture sectors in Sri Lanka. It also discusses the status quo in related disciplines, and outlines future research directions. Accordingly, it offers a valuable source of reference material for researchers, students, and stakeholders in the food and agriculture sectors, while also highlighting the types of support that policymakers and other decision-makers can provide.
The report summarizes results from a cooperation among all the Nordic countries during the period 2015 – 2019 (two projects). The work has focused on the conservation of Crop Wild Relatives (CWR), i.e. wild plant species closely related to crops. They are of special importance to humanity since traits of potential value for food security and climate change adaptation can be transferred from CWR into crops. The projects represent the first joint action on the Nordic level regarding in situ conservation of CWR. Substantial progress has been made regarding CWR conservation planning, including development of a Nordic CWR checklist and identification of suitable sites for CWR conservation. A set of recommended future actions was developed, with the most important one being initiation of active in situ conservation of CWR in all Nordic countries.
About neglected crops of the American continent. Published in collaboration with the Botanical Garden of Cord�ba (Spain) as part of the Etnobot�nica92 Programme (Andalusia, 1992)
The papers included in this Special Issue address a variety of important aspects of plant biodiversity and genetic resources, including definitions, descriptions, and illustrations of different components and their value for food and nutrition security, breeding, and environmental services. Furthermore, comprehensive information is provided regarding conservation approaches and techniques for plant genetic resources, policy aspects, and results of biological, genetic, morphological, economic, social, and breeding-related research activities. The complexity and vulnerability of (plant) biodiversity and its inherent genetic resources, as an integral part of the contextual ecosystem and the human web of life, are clearly demonstrated in this Special Issue, and for several encountered problems and constraints, possible approaches or solutions are presented to overcome these.