This volume contains contributions from international experts in the fields of constructive approximation. This area has reached out to encompass the computational and approximation-theoretical aspects of various interesting fields in applied mathematics.
During the last years, constructive approximation has reached out to enc- pass the computational and approximation-theoretical aspects of di?erent ?elds in applied mathematics, including multivariate approximation methods, qua- interpolation, and multivariate approximation by (orthogonal) polynomials, as well as modern mathematical developments in neuro fuzzy approximation, R- networks, industrial and engineering applications. Following the tradition of our internationalBommerholz conferencesin 1995, 1998, and 2001 we regard this 4th IBoMAT meeting as an important possibility for specialists in the ?eld of applied mathematics to communicateabout new ideas with colleaguesfrom 15 di?erent countries all over Europe and as far awayas New Zealand and the U.S.A. The conference in Witten Bommerholz was, as always, held in a very friendly and congenial atmosphere. The IBoMAT-series editor Detlef H. Mache (Bochum) would like to congr- ulate Marcel de Bruin (Delft) and Joz ́ sef Szabados (Budapest) for an excellent editing job of this 4th volume about Trends and Applications in constructive - proximation. After the previous three published books in Akademie Verlag (1995) and Birkh ̈ auser Verlag (1999 and 2003) we were pleased with the high quality of the contributions which could be solicited for the book. They are refereed and we should mention our gratitude to the referees and their reports.
These proceedings are based on the international conference Approximation Theory XVI held on May 19–22, 2019 in Nashville, Tennessee. The conference was the sixteenth in a series of meetings in Approximation Theory held at various locations in the United States. Over 130 mathematicians from 20 countries attended. The book contains two longer survey papers on nonstationary subdivision and Prony’s method, along with 11 research papers on a variety of topics in approximation theory, including Balian-Low theorems, butterfly spline interpolation, cubature rules, Hankel and Toeplitz matrices, phase retrieval, positive definite kernels, quasi-interpolation operators, stochastic collocation, the gradient conjecture, time-variant systems, and trivariate finite elements. The book should be of interest to mathematicians, engineers, and computer scientists working in approximation theory, computer-aided geometric design, numerical analysis, and related approximation areas.
Quasi-interpolation is one of the most useful and often applied methods for the approximation of functions and data in mathematics and applications. Its advantages are manifold: quasi-interpolants are able to approximate in any number of dimensions, they are efficient and relatively easy to formulate for scattered and meshed nodes and for any number of data. This book provides an introduction into the field for graduate students and researchers, outlining all the mathematical background and methods of implementation. The mathematical analysis of quasi-interpolation is given in three directions, namely on the basis (spline spaces, radial basis functions) from which the approximation is taken, on the form and computation of the quasi-interpolants (point evaluations, averages, least squares), and on the mathematical properties (existence, locality, convergence questions, precision). Learn which type of quasi-interpolation to use in different contexts and how to optimise its features to suit applications in physics and engineering.
This book primarily concerns quasilinear and semilinear elliptic and parabolic partial differential equations, inequalities, and systems. The exposition quickly leads general theory to analysis of concrete equations, which have specific applications in such areas as electrically (semi-) conductive media, modeling of biological systems, and mechanical engineering. Methods of Galerkin or of Rothe are exposed in a large generality.
This book contains a selection of papers presented at the session "Quaternionic and Clifford Analysis" at the 10th ISAAC Congress held in Macau in August 2015. The covered topics represent the state-of-the-art as well as new trends in hypercomplex analysis and its applications.
This book gathers outstanding papers presented at the European Conference on Numerical Mathematics and Advanced Applications (ENUMATH 2019). The conference was organized by Delft University of Technology and was held in Egmond aan Zee, the Netherlands, from September 30 to October 4, 2019. Leading experts in the field presented the latest results and ideas regarding the design, implementation and analysis of numerical algorithms, as well as their applications to relevant societal problems. ENUMATH is a series of conferences held every two years to provide a forum for discussing basic aspects and new trends in numerical mathematics and scientific and industrial applications, all examined at the highest level of international expertise. The first ENUMATH was held in Paris in 1995, with successive installments at various sites across Europe, including Heidelberg (1997), Jyvaskyla (1999), lschia Porto (2001), Prague (2003), Santiago de Compostela (2005), Graz (2007), Uppsala (2009), Leicester (2011), Lausanne (2013), Ankara (2015) and Bergen (2017).
This book introduces advanced numerical-functional analysis to beginning computer science researchers. The reader is assumed to have had basic courses in numerical analysis, computer programming, computational linear algebra, and an introduction to real, complex, and functional analysis. Although the book is of a theoretical nature, each chapter contains several new theoretical results and important applications in engineering, in dynamic economics systems, in input-output system, in the solution of nonlinear and linear differential equations, and optimization problem.
The book presents the state of the art and results and also includes articles pointing to future developments. Most of the articles center around the theme of linear partial differential equations. Major aspects are fast solvers in elastoplasticity, symbolic analysis for boundary problems, symbolic treatment of operators, computer algebra, and finite element methods, a symbolic approach to finite difference schemes, cylindrical algebraic decomposition and local Fourier analysis, and white noise analysis for stochastic partial differential equations. Further numerical-symbolic topics range from applied and computational geometry to computer algebra methods used for total variation energy minimization.
This volume contains 17 surveys that cover many recent developments in Discrete Geometry and related fields. Besides presenting the state-of-the-art of classical research subjects like packing and covering, it also offers an introduction to new topological, algebraic and computational methods in this very active research field. The readers will find a variety of modern topics and many fascinating open problems that may serve as starting points for research.