Traveling Front Solutions in Reaction-Diffusion Equations

Traveling Front Solutions in Reaction-Diffusion Equations

Author: Masaharu Taniguchi

Publisher:

Published: 2021-05-28

Total Pages: 0

ISBN-13: 9784864970976

DOWNLOAD EBOOK

The study on traveling fronts in reaction-diffusion equations is the first step to understand various kinds of propagation phenomena in reaction-diffusion models in natural science. One dimensional traveling fronts have been studied from the 1970s, and multidimensional ones have been studied from around 2005. This volume is a text book for graduate students to start their studies on traveling fronts. Using the phase plane analysis, we study the existence of traveling fronts in several kinds of reaction-diffusion equations. For a nonlinear reaction term, a bistable one is a typical one. For a bistable reaction-diffusion equation, we study the existence and stability of two-dimensional V-form fronts, and we also study pyramidal traveling fronts in three or higher space dimensions. The cross section of a pyramidal traveling front forms a convex polygon. It is known that the limit of a pyramidal traveling front gives a new multidimensional traveling front. For the study the multidimensional traveling front, studying properties of pyramidal traveling fronts plays an important role. In this volume, we study the existence, uniqueness and stability of a pyramidal traveling front as clearly as possible for further studies by graduate students. For a help of their studies, we briefly explain and prove the well-posedness of reaction-diffusion equations and the Schauder estimates and the maximum principles of solutions.Published by Mathematical Society of Japan and distributed by World Scientific Publishing Co. for all markets


Traveling Wave Solutions of Parabolic Systems

Traveling Wave Solutions of Parabolic Systems

Author: A. I. Volpert

Publisher: American Mathematical Soc.

Published:

Total Pages: 474

ISBN-13: 9780821897577

DOWNLOAD EBOOK

The theory of travelling waves described by parabolic equations and systems is a rapidly developing branch of modern mathematics. This book presents a general picture of current results about wave solutions of parabolic systems, their existence, stability, and bifurcations. With introductory material accessible to non-mathematicians and a nearly complete bibliography of about 500 references, this book is an excellent resource on the subject.


Shock Waves and Reaction—Diffusion Equations

Shock Waves and Reaction—Diffusion Equations

Author: Joel Smoller

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 650

ISBN-13: 1461208734

DOWNLOAD EBOOK

For this edition, a number of typographical errors and minor slip-ups have been corrected. In addition, following the persistent encouragement of Olga Oleinik, I have added a new chapter, Chapter 25, which I titled "Recent Results." This chapter is divided into four sections, and in these I have discussed what I consider to be some of the important developments which have come about since the writing of the first edition. Section I deals with reaction-diffusion equations, and in it are described both the work of C. Jones, on the stability of the travelling wave for the Fitz-Hugh-Nagumo equations, and symmetry-breaking bifurcations. Section II deals with some recent results in shock-wave theory. The main topics considered are L. Tartar's notion of compensated compactness, together with its application to pairs of conservation laws, and T.-P. Liu's work on the stability of viscous profiles for shock waves. In the next section, Conley's connection index and connection matrix are described; these general notions are useful in con structing travelling waves for systems of nonlinear equations. The final sec tion, Section IV, is devoted to the very recent results of C. Jones and R. Gardner, whereby they construct a general theory enabling them to locate the point spectrum of a wide class of linear operators which arise in stability problems for travelling waves. Their theory is general enough to be applica ble to many interesting reaction-diffusion systems.


Nonlinear PDE’s in Condensed Matter and Reactive Flows

Nonlinear PDE’s in Condensed Matter and Reactive Flows

Author: Henri Berestycki

Publisher: Springer Science & Business Media

Published: 2002-11-30

Total Pages: 554

ISBN-13: 9781402009723

DOWNLOAD EBOOK

Nonlinear partial differential equations abound in modern physics. The problems arising in these fields lead to fascinating questions and, at the same time, progress in understanding the mathematical structures is of great importance to the models. Nevertheless, activity in one of the approaches is not always sufficiently in touch with developments in the other field. The book presents the joint efforts of mathematicians and physicists involved in modelling reactive flows, in particular superconductivity and superfluidity. Certain contributions are fundamental to an understanding of such cutting-edge research topics as rotating Bose-Einstein condensates, Kolmogorov-Zakharov solutions for weak turbulence equations, and the propagation of fronts in heterogeneous media.


Travelling Waves in Nonlinear Diffusion-Convection Reaction

Travelling Waves in Nonlinear Diffusion-Convection Reaction

Author: Brian H. Gilding

Publisher: Springer Science & Business Media

Published: 2004-07-23

Total Pages: 224

ISBN-13: 9783764370718

DOWNLOAD EBOOK

This monograph has grown out of research we started in 1987, although the foun dations were laid in the 1970's when both of us were working on our doctoral theses, trying to generalize the now classic paper of Oleinik, Kalashnikov and Chzhou on nonlinear degenerate diffusion. Brian worked under the guidance of Bert Peletier at the University of Sussex in Brighton, England, and, later at Delft University of Technology in the Netherlands on extending the earlier mathematics to include nonlinear convection; while Robert worked at Lomonosov State Univer sity in Moscow under the supervision of Anatolii Kalashnikov on generalizing the earlier mathematics to include nonlinear absorption. We first met at a conference held in Rome in 1985. In 1987 we met again in Madrid at the invitation of Ildefonso Diaz, where we were both staying at 'La Residencia'. As providence would have it, the University 'Complutense' closed down during this visit in response to student demonstra tions, and, we were very much left to our own devices. It was natural that we should gravitate to a research topic of common interest. This turned out to be the characterization of the phenomenon of finite speed of propagation for nonlin ear reaction-convection-diffusion equations. Brian had just completed some work on this topic for nonlinear diffusion-convection, while Robert had earlier done the same for nonlinear diffusion-absorption. There was no question but that we bundle our efforts on the general situation.


Propagating Terraces and the Dynamics of Front-Like Solutions of Reaction-Diffusion Equations on R

Propagating Terraces and the Dynamics of Front-Like Solutions of Reaction-Diffusion Equations on R

Author: Peter Poláčik

Publisher: American Mathematical Soc.

Published: 2020-05-13

Total Pages: 100

ISBN-13: 1470441128

DOWNLOAD EBOOK

The author considers semilinear parabolic equations of the form ut=uxx+f(u),x∈R,t>0, where f a C1 function. Assuming that 0 and γ>0 are constant steady states, the author investigates the large-time behavior of the front-like solutions, that is, solutions u whose initial values u(x,0) are near γ for x≈−∞ and near 0 for x≈∞. If the steady states 0 and γ are both stable, the main theorem shows that at large times, the graph of u(⋅,t) is arbitrarily close to a propagating terrace (a system of stacked traveling fonts). The author proves this result without requiring monotonicity of u(⋅,0) or the nondegeneracy of zeros of f. The case when one or both of the steady states 0, γ is unstable is considered as well. As a corollary to the author's theorems, he shows that all front-like solutions are quasiconvergent: their ω-limit sets with respect to the locally uniform convergence consist of steady states. In the author's proofs he employs phase plane analysis, intersection comparison (or, zero number) arguments, and a geometric method involving the spatial trajectories {(u(x,t),ux(x,t)):x∈R}, t>0, of the solutions in question.


Mathematical Theories of Populations

Mathematical Theories of Populations

Author: Frank. Hoppensteadt

Publisher: SIAM

Published: 1975-01-01

Total Pages: 79

ISBN-13: 9781611970487

DOWNLOAD EBOOK

Mathematical theories of populations have appeared both implicitly and explicitly in many important studies of populations, human populations as well as populations of animals, cells and viruses. They provide a systematic way for studying a population's underlying structure. A basic model in population age structure is studied and then applied, extended and modified, to several population phenomena such as stable age distributions, self-limiting effects, and two-sex populations. Population genetics are studied with special attention to derivation and analysis of a model for a one-locus, two-allele trait in a large randomly mating population. The dynamics of contagious phenomena in a population are studied in the context of epidemic diseases.


The Mathematics of Diffusion

The Mathematics of Diffusion

Author: John Crank

Publisher: Oxford University Press

Published: 1979

Total Pages: 428

ISBN-13: 9780198534112

DOWNLOAD EBOOK

Though it incorporates much new material, this new edition preserves the general character of the book in providing a collection of solutions of the equations of diffusion and describing how these solutions may be obtained.


Parabolic Equations in Biology

Parabolic Equations in Biology

Author: Benoît Perthame

Publisher: Springer

Published: 2015-09-09

Total Pages: 204

ISBN-13: 331919500X

DOWNLOAD EBOOK

This book presents several fundamental questions in mathematical biology such as Turing instability, pattern formation, reaction-diffusion systems, invasion waves and Fokker-Planck equations. These are classical modeling tools for mathematical biology with applications to ecology and population dynamics, the neurosciences, enzymatic reactions, chemotaxis, invasion waves etc. The book presents these aspects from a mathematical perspective, with the aim of identifying those qualitative properties of the models that are relevant for biological applications. To do so, it uncovers the mechanisms at work behind Turing instability, pattern formation and invasion waves. This involves several mathematical tools, such as stability and instability analysis, blow-up in finite time, asymptotic methods and relative entropy properties. Given the content presented, the book is well suited as a textbook for master-level coursework.