Transient Effects in Simulations of Hybrid Electric Drivetrains

Transient Effects in Simulations of Hybrid Electric Drivetrains

Author: Florian Winke

Publisher: Springer

Published: 2018-05-31

Total Pages: 140

ISBN-13: 3658225548

DOWNLOAD EBOOK

This work presents an investigation of the influence of different modeling approaches on the quality of fuel economy simulations of hybrid electric powertrains. The main focus is on the challenge to accurately include transient effects and reduce the computation time of complex models. Methods for the composition of entire powertrain models are analyzed as well as the modeling of the individual components internal combustion engine and battery. The results shall help with the selection of suitable models for specific simulation tasks and provide a deeper understanding of the dynamic processes within simulations of hybrid electric vehicles. About the Author Florian Winke was research associate at the Research Institute of Automotive Engineering and Vehicle Engines Stuttgart (FKFS), where he worked on modeling and simulation of hybrid electric powertrains. After finishing his doctorate, he joined a German automotive manufacturer, where he is working in software development in the field of hybrid operation strategies.


Diesel Engine System Design

Diesel Engine System Design

Author: Qianfan Xin

Publisher: Elsevier

Published: 2011-05-26

Total Pages: 1087

ISBN-13: 0857090836

DOWNLOAD EBOOK

Diesel Engine System Design links everything diesel engineers need to know about engine performance and system design in order for them to master all the essential topics quickly and to solve practical design problems. Based on the author's unique experience in the field, it enables engineers to come up with an appropriate specification at an early stage in the product development cycle. - Links everything diesel engineers need to know about engine performance and system design featuring essential topics and techniques to solve practical design problems - Focuses on engine performance and system integration including important approaches for modelling and analysis - Explores fundamental concepts and generic techniques in diesel engine system design incorporating durability, reliability and optimization theories


Design Optimization of the Electrically Peaking Hybrid (ELPH) Vehicle

Design Optimization of the Electrically Peaking Hybrid (ELPH) Vehicle

Author: M. Ehsani

Publisher:

Published: 1998

Total Pages: 212

ISBN-13:

DOWNLOAD EBOOK

Electrically Peaking Hybrid (ELPH) is a parallel hybrid electric vehicle propulsion concept that was invented at Texas A & M University, by the advanced vehicle systems research group. Over the past six years, design methodologies, component development, and system optimization work has been going on for this invention. This project was a first attempt in integrating the above developments into an optimized design of an ELPH passenger car. Design specifications were chosen for a full size passenger car, performing as well as any conventional car, over the EPA-FTP-75 combined city/highway drive cycles. The results of this design project were two propulsion systems. Both were appropriate for commercial production, from the point of view of cost, availability of the technologies, and components. One utilized regenerative braking and the other did not. Substantial fuel savings and emissions reductions resulted from simulating these designs on the FTP-75 drive cycle. For example, our ELPH full size car, with regenerative braking, was capable of delivering over 50 miles per gallon in city driving, with corresponding reductions in its emissions. This project established the viability of the ELPH concept and the design methodologies, in computer simulations. More work remains to be done on investigating more advanced power plants, such as fuel cells, and more advanced components, such as switched reluctance motor drives, for the designs. Furthermore, the design optimization can be carried out to more detailed levels, for prototyping and production.


PEM Fuel Cells with Bio-Ethanol Processor Systems

PEM Fuel Cells with Bio-Ethanol Processor Systems

Author: Marta S. Basualdo

Publisher: Springer Science & Business Media

Published: 2011-10-30

Total Pages: 479

ISBN-13: 1849961840

DOWNLOAD EBOOK

An apparently appropriate control scheme for PEM fuel cells may actually lead to an inoperable plant when it is connected to other unit operations in a process with recycle streams and energy integration. PEM Fuel Cells with Bio-Ethanol Processor Systems presents a control system design that provides basic regulation of the hydrogen production process with PEM fuel cells. It then goes on to construct a fault diagnosis system to improve plant safety above this control structure. PEM Fuel Cells with Bio-Ethanol Processor Systems is divided into two parts: the first covers fuel cells and the second discusses plants for hydrogen production from bio-ethanol to feed PEM fuel cells. Both parts give detailed analyses of modeling, simulation, advanced control, and fault diagnosis. They give an extensive, in-depth discussion of the problems that can occur in fuel cell systems and propose a way to control these systems through advanced control algorithms. A significant part of the book is also given over to computer-aided engineering software tools that can be used to evaluate the dynamic performance of the overall plant. PEM Fuel Cells with Bio-Ethanol Processor Systems is intended for use by researchers and advanced students on chemical, electrical-electronic and mechanical engineering courses in which dynamics and control are incorporated with the traditional steady-state coverage of flowsheet synthesis, engineering economics and optimization.


Electric and Hybrid-Electric Vehicles

Electric and Hybrid-Electric Vehicles

Author: Ronald K Jurgen

Publisher: SAE International

Published: 2002-02-01

Total Pages: 638

ISBN-13: 146860208X

DOWNLOAD EBOOK

This book chronicles recent advances in electric and hybrid-electric vehicles and looks ahead to the future potential of these vehicles. Featuring SAE technical papers -- plus articles from Automotive Engineering International magazine -- from 1997-2001, Electric and Hybrid Electric Vehicles provides coverage of topics such as: Lithium-Ion Batteries Regenerative Braking Fuel Economy Transmissions Fuel Cell Technology Hydrogen-Fueled Engines And many more Electric and hybrid-electric activities at companies such as Nissan, Mercedes-Benz, Ford, Dodge, and Toyota are also covered.


Hybrid Electric Vehicle System Modeling and Control

Hybrid Electric Vehicle System Modeling and Control

Author: Wei Liu

Publisher: John Wiley & Sons

Published: 2017-04-17

Total Pages: 584

ISBN-13: 1119279321

DOWNLOAD EBOOK

This new edition includes approximately 30% new materials covering the following information that has been added to this important work: extends the contents on Li-ion batteries detailing the positive and negative electrodes and characteristics and other components including binder, electrolyte, separator and foils, and the structure of Li-ion battery cell. Nickel-cadmium batteries are deleted. adds a new section presenting the modelling of multi-mode electrically variable transmission, which gradually became the main structure of the hybrid power-train during the last 5 years. newly added chapter on noise and vibration of hybrid vehicles introduces the basics of vibration and noise issues associated with power-train, driveline and vehicle vibrations, and addresses control solutions to reduce the noise and vibration levels. Chapter 10 (chapter 9 of the first edition) is extended by presenting EPA and UN newly required test drive schedules and test procedures for hybrid electric mileage calculation for window sticker considerations. In addition to the above major changes in this second edition, adaptive charging sustaining point determination method is presented to have a plug-in hybrid electric vehicle with optimum performance.


Real-Time Simulation Technologies: Principles, Methodologies, and Applications

Real-Time Simulation Technologies: Principles, Methodologies, and Applications

Author: Katalin Popovici

Publisher: CRC Press

Published: 2017-12-19

Total Pages: 660

ISBN-13: 1439847231

DOWNLOAD EBOOK

Real-Time Simulation Technologies: Principles, Methodologies, and Applications is an edited compilation of work that explores fundamental concepts and basic techniques of real-time simulation for complex and diverse systems across a broad spectrum. Useful for both new entrants and experienced experts in the field, this book integrates coverage of detailed theory, acclaimed methodological approaches, entrenched technologies, and high-value applications of real-time simulation—all from the unique perspectives of renowned international contributors. Because it offers an accurate and otherwise unattainable assessment of how a system will behave over a particular time frame, real-time simulation is increasingly critical to the optimization of dynamic processes and adaptive systems in a variety of enterprises. These range in scope from the maintenance of the national power grid, to space exploration, to the development of virtual reality programs and cyber-physical systems. This book outlines how, for these and other undertakings, engineers must assimilate real-time data with computational tools for rapid decision making under uncertainty. Clarifying the central concepts behind real-time simulation tools and techniques, this one-of-a-kind resource: Discusses the state of the art, important challenges, and high-impact developments in simulation technologies Provides a basis for the study of real-time simulation as a fundamental and foundational technology Helps readers develop and refine principles that are applicable across a wide variety of application domains As science moves toward more advanced technologies, unconventional design approaches, and unproven regions of the design space, simulation tools are increasingly critical to successful design and operation of technical systems in a growing number of application domains. This must-have resource presents detailed coverage of real-time simulation for system design, parallel and distributed simulations, industry tools, and a large set of applications.


Lithium Ion Batteries in Electric Drive Vehicles

Lithium Ion Batteries in Electric Drive Vehicles

Author: Ahmad A Pesaran

Publisher: SAE International

Published: 2016-05-16

Total Pages: 104

ISBN-13: 0768083311

DOWNLOAD EBOOK

This research focuses on the technical issues that are critical to the adoption of high-energy-producing lithium Ion batteries. In addition to high energy density / high power density, this publication considers performance requirements that are necessary to assure lithium ion technology as the battery format of choice for electrified vehicles. Presentation of prime topics includes: • Long calendar life (greater than 10 years) • Sufficient cycle life • Reliable operation under hot and cold temperatures • Safe performance under extreme conditions • End-of-life recycling To achieve aggressive fuel economy standards, carmakers are developing technologies to reduce fuel consumption, including hybridization and electrification. Cost and affordability factors will be determined by these relevant technical issues which will provide for the successful implementation of lithium ion batteries for application in future generations of electrified vehicles.