Recent scandals and controversies, such as data fabrication in federally funded science, data manipulation and distortion in private industry, and human embryonic stem cell research, illustrate the importance of ethics in science. Responsible Conduct of Research, now in a completely updated second edition, provides an introduction to the social, ethical, and legal issues facing scientists today.
This report provides an assessment of NIH's programs for increasing the participation in biomedical science of individuals from underrepresented minority groups. The report examines, using available data and the results of a survey of NIH trainees, the characteristics and outcomes of programs at the undergraduate, graduate, postdoctoral, and junior faculty levels. The report provides recommendations for improving these programs and their administration. It also recommends how NIH can improve the data it collects on trainees in all NIH research training programs so as to enhance training program evaluation.
This report is the twelfth assessment of the National Institutes of Health National Research Service Awards program. The research training needs of the country in basic biomedical, clinical, and behavioral and social sciences are considered. Also included are the training needs of oral health, nursing, and health services research. The report has been broadly constructed to take into account the rapidly evolving national and international health care needs. The past and present are analyzed, and predictions with regard to future needs are presented.
A rising median age at which PhD's receive their first research grant from the National Institutes of Health (NIH) is among the factors forcing academic biomedical researchers to spend longer periods of time before they can set their own research directions and establish there independence. The fear that promising prospective scientists will choose other career paths has raised concerns about the future of biomedical research in the United States. At the request of NIH, the National Academies conducted a study on ways to address these issues. The report recommends that NIH make fostering independence of biomedical researchers an agencywide goal, and that it take steps to provide postdocs and early-career investigators with more financial support for their own research, improve postdoc mentoring and establish programs for new investigators and staff scientists among other mechanisms.
Public health efforts have resulted in tremendous improvements in the health of individuals and communities. The foundation for effective public health interventions rests, in large part, on a well-trained workforce. Unfortunately there is a major shortage of public health physicians who are prepared to face today's public health challenges. Training Physicians for Public Health Careers focuses on the critical roles that physicians play in maintaining and strengthening the public health system, identifies what these physicians need to know to engage in effective public health actions, explores the kinds of training programs that can be used to prepare physicians for public health roles, and examines how these training programs can be funded. Medical schools, schools of public health, health care and public health care professionals, medical students and students of public health will find this of special interest.
The nature of biomedical research has been evolving in recent years. Technological advances that make it easier to study the vast complexity of biological systems have led to the initiation of projects with a larger scale and scope. In many cases, these large-scale analyses may be the most efficient and effective way to extract functional information from complex biological systems. Large-Scale Biomedical Science: Exploring Strategies for Research looks at the role of these new large-scale projects in the biomedical sciences. Though written by the National Academies' Cancer Policy Board, this book addresses implications of large-scale science extending far beyond cancer research. It also identifies obstacles to the implementation of these projects, and makes recommendations to improve the process. The ultimate goal of biomedical research is to advance knowledge and provide useful innovations to society. Determining the best and most efficient method for accomplishing that goal, however, is a continuing and evolving challenge. The recommendations presented in Large-Scale Biomedical Science are intended to facilitate a more open, inclusive, and accountable approach to large-scale biomedical research, which in turn will maximize progress in understanding and controlling human disease.