Rapid Manufacturing

Rapid Manufacturing

Author: Neil Hopkinson

Publisher: John Wiley & Sons

Published: 2006-02-22

Total Pages: 304

ISBN-13: 9780470032862

DOWNLOAD EBOOK

Rapid Manufacturing is a new area of manufacturing developed from a family of technologies known as Rapid Prototyping. These processes have already had the effect of both improving products and reducing their development time; this in turn resulted in the development of the technology of Rapid Tooling, which implemented Rapid Prototyping techniques to improve its own processes. Rapid Manufacturing has developed as the next stage, in which the need for tooling is eliminated. It has been shown that it is economically feasible to use existing commercial Rapid Prototyping systems to manufacture series parts in quantities of up to 20,000 and customised parts in quantities of hundreds of thousands. This form of manufacturing can be incredibly cost-effective and the process is far more flexible than conventional manufacturing. Rapid Manufacturing: An Industrial Revolution for the Digital Age addresses the academic fundamentals of Rapid Manufacturing as well as focussing on case studies and applications across a wide range of industry sectors. As a technology that allows manufacturers to create products without tools, it enables previously impossible geometries to be made. This book is abundant with images depicting the fantastic array of products that are now being commercially manufactured using these technologies. Includes contributions from leading researchers working at the forefront of industry. Features detailed illustrations throughout. Rapid Manufacturing: An Industrial Revolution for the Digital Age is a groundbreaking text that provides excellent coverage of this fast emerging industry. It will interest manufacturing industry practitioners in research and development, product design and materials science, as well as having a theoretical appeal to researchers and post-graduate students in manufacturing engineering, product design, CAD/CAM and CIFM.


Multiscale Structural Topology Optimization

Multiscale Structural Topology Optimization

Author: Liang Xia

Publisher: Elsevier

Published: 2016-04-27

Total Pages: 186

ISBN-13: 0081011865

DOWNLOAD EBOOK

Multiscale Structural Topology Optimization discusses the development of a multiscale design framework for topology optimization of multiscale nonlinear structures. With the intention to alleviate the heavy computational burden of the design framework, the authors present a POD-based adaptive surrogate model for the RVE solutions at the microscopic scale and make a step further towards the design of multiscale elastoviscoplastic structures. Various optimization methods for structural size, shape, and topology designs have been developed and widely employed in engineering applications. Topology optimization has been recognized as one of the most effective tools for least weight and performance design, especially in aeronautics and aerospace engineering. This book focuses on the simultaneous design of both macroscopic structure and microscopic materials. In this model, the material microstructures are optimized in response to the macroscopic solution, which results in the nonlinearity of the equilibrium problem of the interface of the two scales. The authors include a reduce database model from a set of numerical experiments in the space of effective strain. - Presents the first attempts towards topology optimization design of nonlinear highly heterogeneous structures - Helps with simultaneous design of the topologies of both macroscopic structure and microscopic materials - Helps with development of computer codes for the designs of nonlinear structures and of materials with extreme constitutive properties - Focuses on the simultaneous design of both macroscopic structure and microscopic materials - Includes a reduce database model from a set of numerical experiments in the space of effective strain


Proceedings of the First International Conference on Theoretical, Applied and Experimental Mechanics

Proceedings of the First International Conference on Theoretical, Applied and Experimental Mechanics

Author: Emmanuel E. Gdoutos

Publisher: Springer

Published: 2018-05-26

Total Pages: 423

ISBN-13: 331991989X

DOWNLOAD EBOOK

ICTAEM_1 treated all aspects of theoretical, applied and experimental mechanics including biomechanics, composite materials, computational mechanics, constitutive modeling of materials, dynamics, elasticity, experimental mechanics, fracture, mechanical properties of materials, micromechanics, nanomechanics, plasticity, stress analysis, structures, wave propagation. During the conference special symposia covering major areas of research activity organized by members of the Scientific Advisory Board took place. ICTAEM_1 brought together the most outstanding world leaders and gave attendees the opportunity to get acquainted with the latest developments in the area of mechanics. ICTAEM_1 is a forum of university, industry and government interaction and serves in the exchange of ideas in an area of utmost scientific and technological importance.


Towards Design Automation for Additive Manufacturing

Towards Design Automation for Additive Manufacturing

Author: Anton Wiberg

Publisher: Linköping University Electronic Press

Published: 2019-10-14

Total Pages: 69

ISBN-13: 9179299857

DOWNLOAD EBOOK

In recent decades, the development of computer-controlled manufacturing by adding materiallayer by layer, called Additive Manufacturing (AM), has developed at a rapid pace. The technologyadds possibilities to the manufacturing of geometries that are not possible, or at leastnot economically feasible, to manufacture by more conventional manufacturing methods. AMcomes with the idea that complexity is free, meaning that complex geometries are as expensiveto manufacture as simple geometries. This is partly true, but there remain several design rulesthat needs to be considered before manufacturing. The research field Design for Additive Manufacturing(DfAM) consists of research that aims to take advantage of the possibilities of AMwhile considering the limitations of the technique. Computer Aided technologies (CAx) is the name of the usage of methods and software thataim to support a digital product development process. CAx includes software and methodsfor design, the evaluation of designs, manufacturing support, and other things. The commongoal with all CAx disciplines is to achieve better products at a lower cost and with a shorterdevelopment time. The work presented in this thesis bridges DfAM with CAx with the aim of achieving designautomation for AM. The work reviews the current DfAM process and proposes a new integratedDfAM process that considers the functionality and manufacturing of components. Selectedparts of the proposed process are implemented in a case study in order to evaluate theproposed process. In addition, a tool that supports part of the design process is developed. The proposed design process implements Multidisciplinary Design Optimization (MDO) witha parametric CAD model that is evaluated from functional and manufacturing perspectives. Inthe implementation, a structural component is designed using the MDO framework, which includesComputer Aided Engineering (CAE) models for structural evaluation, the calculation ofweight, and how much support material that needs to be added during manufacturing. Thecomponent is optimized for the reduction of weight and minimization of support material,while the stress levels in the component are constrained. The developed tool uses methodsfor high level Parametric CAD modelling to simplify the creation of parametric CAD modelsbased on Topology Optimization (TO) results. The work concludes that the implementation of CAx technologies in the DfAM process enablesa more automated design process with less manual design iterations than traditional DfAM processes.It also discusses and presents directions for further research to achieve a fully automateddesign process for Additive Manufacturing.


Metal Additive Manufacturing

Metal Additive Manufacturing

Author: Dyuti Sarker

Publisher: John Wiley & Sons

Published: 2021-10-26

Total Pages: 624

ISBN-13: 1119210836

DOWNLOAD EBOOK

METAL ADDITIVE MANUFACTURING A comprehensive review of additive manufacturing processes for metallic structures Additive Manufacturing (AM)—also commonly referred to as 3D printing—builds three-dimensional objects by adding materials layer by layer. Recent years have seen unprecedented investment in additive manufacturing research and development by governments and corporations worldwide. This technology has the potential to replace many conventional manufacturing processes, enable the development of new industry practices, and transform the entire manufacturing enterprise. Metal Additive Manufacturing provides an up-to-date review of all essential physics of metal additive manufacturing techniques with emphasis on both laser-based and non-laser-based additive manufacturing processes. This comprehensive volume covers fundamental processes and equipment, governing physics and modelling, design and topology optimization, and more. The text adresses introductory, intermediate, and advanced topics ranging from basic additive manufacturing process classification to practical and material design aspects of additive manufacturability. Written by a panel of expert authors in the field, this authoritative resource: Provides a thorough analysis of AM processes and their theoretical foundations Explains the classification, advantages, and applications of AM processes Describes the equipment required for different AM processes for metallic structures, including laser technologies, positioning devices, feeder and spreader mechanisms, and CAD software Discusses the opportunities, challenges, and current and emerging trends within the field Covers practical considerations, including design for AM, safety, quality assurance, automation, and real-time control of AM processes Includes illustrative cases studies and numerous figures and tables Featuring material drawn from the lead author’s research and professional experience on laser additive manufacturing, Metal Additive Manufacturing is an important source for manufacturing professionals, research and development engineers in the additive industry, and students and researchers involved in mechanical, mechatronics, automatic control, and materials engineering and science.


Predictive Theoretical and Computational Approaches for Additive Manufacturing

Predictive Theoretical and Computational Approaches for Additive Manufacturing

Author: National Academies of Sciences, Engineering, and Medicine

Publisher: National Academies Press

Published: 2016-12-21

Total Pages: 149

ISBN-13: 0309449758

DOWNLOAD EBOOK

Additive manufacturing (AM) methods have great potential for promoting transformative research in many fields across the vast spectrum of engineering and materials science. AM is one of the leading forms of advanced manufacturing which enables direct computer-aided design (CAD) to part production without part-specific tooling. In October 2015 the National Academies of Sciences, Engineering, and Medicine convened a workshop of experts from diverse communities to examine predictive theoretical and computational approaches for various AM technologies. While experimental workshops in AM have been held in the past, this workshop uniquely focused on theoretical and computational approaches and involved areas such as simulation-based engineering and science, integrated computational materials engineering, mechanics, materials science, manufacturing processes, and other specialized areas. This publication summarizes the presentations and discussions from the workshop.


Optimization of Structural Topology, Shape, and Material

Optimization of Structural Topology, Shape, and Material

Author: Martin P. Bendsoe

Publisher: Springer Science & Business Media

Published: 2013-03-14

Total Pages: 278

ISBN-13: 3662031159

DOWNLOAD EBOOK

In the past, the possibilities of structural optimization were restricted to an optimal choice of profiles and shape. Further improvement can be obtained by selecting appropriate advanced materials and by optimizing the topology, i.e. finding the best position and arrangement of structural elements within a construction. The optimization of structural topology permits the use of optimization algorithms at a very early stage of the design process. The method presented in this book has been developed by Martin Bendsoe in cooperation with other researchers and can be considered as one of the most effective approaches to the optimization of layout and material design.


Additive Manufacturing Applications for Metals and Composites

Additive Manufacturing Applications for Metals and Composites

Author: Balasubramanian, K.R.

Publisher: IGI Global

Published: 2020-06-19

Total Pages: 348

ISBN-13: 1799840557

DOWNLOAD EBOOK

Additive manufacturing (AM) of metals and composites using laser energy, direct energy deposition, electron beam methods, and wire arc melting have recently gained importance due to their advantages in fabricating the complex structure. Today, it has become possible to reliably manufacture dense parts with certain AM processes for many materials, including steels, aluminum and titanium alloys, superalloys, metal-based composites, and ceramic matrix composites. In the near future, the AM material variety will most likely grow further, with high-performance materials such as intermetallic compounds and high entropy alloys already under investigation. Additive Manufacturing Applications for Metals and Composites is a pivotal reference source that provides vital research on advancing methods and technological developments within additive manufacturing practices. Special attention is paid to the material design of additive manufacturing of parts, the choice of feedstock materials, the metallurgical behavior and synthesis principle during the manufacturing process, and the resulted microstructures and properties, as well as the relationship between these factors. While highlighting topics such as numerical modeling, intermetallic compounds, and statistical techniques, this publication is ideally designed for students, engineers, researchers, manufacturers, technologists, academicians, practitioners, scholars, and educators.


Topology Optimization

Topology Optimization

Author: Martin Philip Bendsoe

Publisher: Springer Science & Business Media

Published: 2013-04-17

Total Pages: 381

ISBN-13: 3662050862

DOWNLOAD EBOOK

The topology optimization method solves the basic enginee- ring problem of distributing a limited amount of material in a design space. The first edition of this book has become the standard text on optimal design which is concerned with the optimization of structural topology, shape and material. This edition, has been substantially revised and updated to reflect progress made in modelling and computational procedures. It also encompasses a comprehensive and unified description of the state-of-the-art of the so-called material distribution method, based on the use of mathematical programming and finite elements. Applications treated include not only structures but also materials and MEMS.