Pollutant Load Reductions for Total Maximum Daily Loads for Highways

Pollutant Load Reductions for Total Maximum Daily Loads for Highways

Author: Shahid A. Abbasi

Publisher: Transportation Research Board

Published: 2013

Total Pages: 71

ISBN-13: 0309223849

DOWNLOAD EBOOK

"The intent of this synthesis is to collect information on the types of best management practices (BMPs) currently being used by state departments of transportation (DOTs) for meeting total maximum daily load (TMDL) water quality goals for stormwater runoff. The study approach includes two major components: interviews with 12 state DOTs to identify the existing state of the practice as it relates to TMDL implementation, and a review of selected literature sources based on the criteria of highways, TMDLs, BMP performance, and BMP cost to stay consistent with the goals of this synthesis. In particular, detailed quantitative BMP performance and cost data, including life-cycle costs, are presented, which builds significantly on previous studies of this nature. The impetus for this study was to help fill in a significant information gap on what types of BMPs are cost-effective for specific use in linear highway applications for TMDL implementation purposes. Even with the advent of new low-impact development/green infrastructure practices, there remain a lack of effective BMP technologies and nonstructural controls (e.g., source control and water quality credit trading) for DOTs to implement for National Pollutant Discharge Elimination System permit compliance. This problem will only grow larger as new TMDLs are continually being developed, and many DOTs are unprepared both technically and economically to cope with the additional requirements (some states already have 60+ TMDLs in which they are a named stakeholder). In an effort to help state DOTs with TMDL implementation, a simple user-friendly BMP matrix/toolbox with quantitative performance and, where available, life-cycle cost data for various structural and nonstructural BMPs is presented. Some of the more common TMDL pollutants of concern (sediment, nutrients, fecal coliform, and metals) are focused to maximize applicability for state DOTs. The performance and cost data were derived from numerous literature sources including the International Stormwater BMP Database, which currently consists of more than 400 studies. This study is designed to help promote information exchange and technology transfer among DOTs for the mutual benefit of all highway managers faced with TMDL implementation. Conclusions from this synthesis are briefly highlighted here by general topic area, with more details provided in chapters four and five. Performance for structural BMPs varied by pollutant and BMP type; however, certain trends did emerge from the literature review. In general, total suspended solids (TSS) appear to be relatively easy to treat with a broad range of BMPs, including infiltration basins, sand filters, and bioretention. Nutrients (especially total nitrogen) can be more challenging to remove; nonetheless, some BMPs (e.g., Austin sand filters for total nitrogen and infiltration basins for total phosphorus) showed some promise. Fecal coliform data were limited; however, several BMPs were documented as being effective, including infiltration basins, and infiltration trenches, among others. Additional BMP performance data from the International Stormwater BMP Database support the view that media filters and retention ponds are consistently effective for a wide variety of TMDL pollutants, including TSS, nutrients, fecal coliform, and total metals. This conclusion is based on statistics that show that median concentrations of these pollutants were statistically lower in effluent concentrations compared with influent concentrations based on a large number of studies from around the country (although not all highway related). Overall, while these BMPs may be generally effective across a range of environmental conditions, obtaining local site-specific BMP monitoring data would be preferable for developing individual state DOT TMDL programs. Performance data are also presented for nonstructural practices such as street sweeping, catch basin cleaning, and tree planting. Quantitative performance data are generally lacking in the literature for these types of BMPs. The limited information found suggests that street sweeping and catch basin cleaning may potentially be effective strategies for reducing TSS, nutrients, and metals provided they are performed frequently enough and the right technology is used (in the case of sweeping). Tree planting and stream restoration were documented as having some water quality benefits for nutrients. Notably, anti-icing management has been successfully demonstrated in New Hampshire, where a 20% reduction in chlorides was achieved by upgrading the technology on snow plows in response to a chloride TMDL. In addition to performance, life-cycle cost data are presented where available. However, the cost information could not be adequately synthesized owing to differences in cost estimating approaches, reporting units, variability in costs among states and regions, and inconsistencies in BMP naming conventions. This also prevented a true cost-benefit analysis. However, numerous sources of life-cycle cost data, as well as sources for individual cost elements such as design, construction, and operation and maintenance, are provided where the interested reader may obtain more detailed information. Given the differences in cost from one region to another, the reader is encouraged to obtain cost data that are most relevant to their state. Hyperlinks are provided in the BMP matrix/toolbox where one may access examples of reports with detailed life-cycle cost data, and numerous additional cost sources are cited throughout the section on Highway Best Management Practices in chapter three. There appear to be several common elements to developing an effective TMDL implementation program, all of which have the potential to benefit DOTs by helping them receive a more equitable waste load allocation and developing a more manageable TMDL program. The key elements are listed here (although not all may apply to every DOT): Increase awareness and training within the DOT on TMDL issues, especially in cases where the DOT is named a stakeholder in only a few TMDLs (or none). Develop off-site watershed partnerships and collaborate with other stakeholders to ensure cost-effective approaches based on economies of scale and to promote information sharing and technology transfer among stakeholders. Collaborate with the state regulatory agency during the TMDL development process, especially early in the process. Estimate pollutant loads generated within the DOT right-of-way (either through water quality monitoring or modeling) and predict potential load reductions from various BMP implementation scenarios. Although some DOTs had relatively successful TMDL programs, others clearly faced a number of challenges. The primary challenges were limited financial resources, a lack of effective BMP technologies for linear highway applications, and difficulties in navigating complex regulatory environments where TMDL-related requirements were either inconsistently enforced or restricted the flexibility of the DOT in implementing BMPs of their choice. Further research is suggested on the following topics: long-term adverse environmental and cultural aspects of BMP implementation; new and innovative BMP technologies suitable for the highway environment; more studies on BMP longevity, life-cycle costs, and maintenance costs and standards; and alternative and creative solutions to addressing emerging TMDLs for less traditional pollutants such as biological integrity, sediment toxicity, and organic compounds (e.g., vehicle source control, water quality trading)"--Pages 1-2.


Aquatic Pollution

Aquatic Pollution

Author: Edward A. Laws

Publisher: John Wiley & Sons

Published: 2017-02-24

Total Pages: 1015

ISBN-13: 1119304598

DOWNLOAD EBOOK

Since the publication of the third edition of Aquatic Pollution in 2000, there have been many major developments within the field in terms of research, regulations, and also large-scale catastrophes that have had a significant impact on the aquatic environment; the Deepwater Horizon oil spill and the Fukushima nuclear disaster have taken their toll, and research on ocean acidification has developed enormously over the last decade. Recognizing, controlling, and mitigating aquatic pollution on a global scale is one of the most important and most difficult challenges facing society today. Fully updated to reflect current understanding and discussing these major recent developments, this fourth edition of Aquatic Pollution covers every aspect of pollution associated with urban runoff, acid rain, sewage disposal, pesticides, oil spills, nutrient loading, and more. Case studies of major pollution sites, all original to this new edition, help to illustrate points made in general discussion. Offering unprecedented depth of coverage, and discussing both fresh and sea water environments, this unique text provides a key teaching and learning tool for courses in environmental science, zoology, oceanography, biology, and civil or sanitary engineering, as well as a vital book for government policy makers. It is also an excellent primer for policymakers and activists focused on environmental issues.


Water and Life in Tonle Sap Lake

Water and Life in Tonle Sap Lake

Author: Chihiro Yoshimura

Publisher: Springer Nature

Published: 2022-06-24

Total Pages: 504

ISBN-13: 9811666326

DOWNLOAD EBOOK

This book describes the water, wildlife, and livelihood of Tonle Sap Lake and its basin in Cambodia, the largest freshwater lake in Southeast Asia. It comprehensively elucidates the processes underlying the dynamic, productive, and unique ecosystem, covering the major environmental and administrative components such as climate, water flow and storage, sediment, nutrient, flora, fauna, floating villages, management, and governance. Anthropogenic impacts including climate change on the lake are also highlighted. This book serves as a guidebook to multiple audiences, including professionals and academicians. It is beneficial to the university students and lecturers, researchers, freelancers, and policymakers in analyzing, interpreting, and taking action for the environmental conservation of the lake environment. In addition, this is the first comprehensive book on evidence-based research and policy-relevant experience and knowledge about Tonle Sap Lake. For instance, the content will assist the policymakers and researchers in setting management policies and practices, especially for large shallow lakes and developing countries. It can also be used as a textbook in environmental science and engineering at undergraduate and graduate levels worldwide in understanding and synthesizing new research directions relevant to the water environment.


Pollutant Fate and Transport in Environmental Multimedia

Pollutant Fate and Transport in Environmental Multimedia

Author: Frank M. Dunnivant

Publisher: John Wiley & Sons

Published: 2019-03-28

Total Pages: 672

ISBN-13: 1119414652

DOWNLOAD EBOOK

Bridges the gaps between regulatory, engineering, and science disciplines in order to comprehensively cover pollutant fate and transport in environmental multimedia This book presents and integrates all aspects of fate and transport: chemistry, modeling, various forms of assessment, and the environmental legal framework. It approaches each of these topics initially from a conceptual perspective before explaining the concepts in terms of the math necessary to model the problem so that students of all levels can learn and eventually contribute to the advancement of water quality science. The first third of Pollutant Fate and Transport in Environmental Multimedia is dedicated to the relevant aspects of chemistry behind the fate and transport processes. It provides relatively simple examples and problems to teach these principles. The second third of the book is based on the conceptual derivation and the use of common models to evaluate the importance of model parameters and sensitivity analysis; complex equation derivations are given in appendices. Computer exercises and available simulators teach and enforce the concepts and logic behind fate and transport modeling. The last third of the book is focused on various aspects of assessment (toxicology, risk, benefit-cost, and life cycle) and environmental legislation in the US, Europe, and China. The book closes with a set of laboratory exercises that illustrate chemical and fate and transport concepts covered in the text, with example results for most experiments. Features more introductory material on past environmental disasters and the continued need to study environmental chemistry and engineering Covers chemical toxicology with various forms of assessment, United States, European, and Chinese regulations, and advanced fate and transport modeling and regulatory implications Provides a conceptual and relatively simple mathematical approach to fate and transport modeling, yet complex derivations of most equations are given in appendices Integrates the use of numerous software packages (pC-pH, EnviroLab Simulators, Water, Wastewater, and Global Issues), and FateĀ©2016 Contains numerous easy-to-understand examples and problems along with answers for most end-of-the-chapter problems, and simulators for answers to fate and transport questions Includes numerous companion laboratory experiments with EnviroLab Requiring just a basic knowledge of algebra and first-year college chemistry to start, Pollutant Fate and Transport in Environmental Multimedia is an excellent textbook for upper-level undergraduate and graduate faculty and students studying environmental engineering and science.