Sheaves in Geometry and Logic

Sheaves in Geometry and Logic

Author: Saunders Mac Lane

Publisher:

Published: 1992

Total Pages: 627

ISBN-13: 9783540977100

DOWNLOAD EBOOK

An introduction to the theory of toposes which begins with illustrative examples and goes on to explain the underlying ideas of topology and sheaf theory as well as the general theory of elementary toposes and geometric morphisms and their relation to logic.


Toposes and Local Set Theories

Toposes and Local Set Theories

Author: John L. Bell

Publisher: Courier Corporation

Published: 2008-01-01

Total Pages: 290

ISBN-13: 0486462862

DOWNLOAD EBOOK

This text introduces topos theory, a development in category theory that unites important but seemingly diverse notions from algebraic geometry, set theory, and intuitionistic logic. Topics include local set theories, fundamental properties of toposes, sheaves, local-valued sets, and natural and real numbers in local set theories. 1988 edition.


Sketches of an Elephant: A Topos Theory Compendium

Sketches of an Elephant: A Topos Theory Compendium

Author: P. T. Johnstone

Publisher: Oxford University Press

Published: 2002-09-12

Total Pages: 836

ISBN-13: 9780198515982

DOWNLOAD EBOOK

Topos Theory is a subject that stands at the junction of geometry, mathematical logic and theoretical computer science, and it derives much of its power from the interplay of ideas drawn from these different areas. Because of this, an account of topos theory which approaches the subject from one particular direction can only hope to give a partial picture; the aim of this compendium is to present as comprehensive an account as possible of all the main approaches and to thereby demonstrate the overall unity of the subject. The material is organized in such a way that readers interested in following a particular line of approach may do so by starting at an appropriate point in the text.


The Topos of Music I: Theory

The Topos of Music I: Theory

Author: Guerino Mazzola

Publisher: Springer

Published: 2018-03-28

Total Pages: 675

ISBN-13: 3319643649

DOWNLOAD EBOOK

This is the first volume of the second edition of the now classic book “The Topos of Music”. The author explains the theory's conceptual framework of denotators and forms, the classification of local and global musical objects, the mathematical models of harmony and counterpoint, and topologies for rhythm and motives.


Toposes, Triples and Theories

Toposes, Triples and Theories

Author: M. Barr

Publisher: Springer

Published: 2013-06-09

Total Pages: 347

ISBN-13: 9781489900234

DOWNLOAD EBOOK

As its title suggests, this book is an introduction to three ideas and the connections between them. Before describing the content of the book in detail, we describe each concept briefly. More extensive introductory descriptions of each concept are in the introductions and notes to Chapters 2, 3 and 4. A topos is a special kind of category defined by axioms saying roughly that certain constructions one can make with sets can be done in the category. In that sense, a topos is a generalized set theory. However, it originated with Grothendieck and Giraud as an abstraction of the of the category of sheaves of sets on a topological space. Later, properties Lawvere and Tierney introduced a more general id~a which they called "elementary topos" (because their axioms did not quantify over sets), and they and other mathematicians developed the idea that a theory in the sense of mathematical logic can be regarded as a topos, perhaps after a process of completion. The concept of triple originated (under the name "standard construc in Godement's book on sheaf theory for the purpose of computing tions") sheaf cohomology. Then Peter Huber discovered that triples capture much of the information of adjoint pairs. Later Linton discovered that triples gave an equivalent approach to Lawverc's theory of equational theories (or rather the infinite generalizations of that theory). Finally, triples have turned out to be a very important tool for deriving various properties of toposes.


Elementary Categories, Elementary Toposes

Elementary Categories, Elementary Toposes

Author: Colin McLarty

Publisher: Clarendon Press

Published: 1992-06-04

Total Pages: 282

ISBN-13: 0191589497

DOWNLOAD EBOOK

The book covers elementary aspects of category theory and topos theory. It has few mathematical prerequisites, and uses categorical methods throughout rather than beginning with set theoretic foundations. It works with key notions such as cartesian closedness, adjunctions, regular categories, and the internal logic of a topos. Full statements and elementary proofs are given for the central theorems, including the fundamental theorem of toposes, the sheafification theorem, and the construction of Grothendieck toposes over any topos as base. Three chapters discuss applications of toposes in detail, namely to sets, to basic differential geometry, and to recursive analysis. - ;Introduction; PART I: CATEGORIES: Rudimentary structures in a category; Products, equalizers, and their duals; Groups; Sub-objects, pullbacks, and limits; Relations; Cartesian closed categories; Product operators and others; PART II: THE CATEGORY OF CATEGORIES: Functors and categories; Natural transformations; Adjunctions; Slice categories; Mathematical foundations; PART III: TOPOSES: Basics; The internal language; A soundness proof for topos logic; From the internal language to the topos; The fundamental theorem; External semantics; Natural number objects; Categories in a topos; Topologies; PART IV: SOME TOPOSES: Sets; Synthetic differential geometry; The effective topos; Relations in regular categories; Further reading; Bibliography; Index. -


Conceptual Mathematics

Conceptual Mathematics

Author: F. William Lawvere

Publisher: Cambridge University Press

Published: 2009-07-30

Total Pages: 409

ISBN-13: 0521894859

DOWNLOAD EBOOK

This truly elementary book on categories introduces retracts, graphs, and adjoints to students and scientists.


Category Theory in Context

Category Theory in Context

Author: Emily Riehl

Publisher: Courier Dover Publications

Published: 2017-03-09

Total Pages: 273

ISBN-13: 0486820807

DOWNLOAD EBOOK

Introduction to concepts of category theory — categories, functors, natural transformations, the Yoneda lemma, limits and colimits, adjunctions, monads — revisits a broad range of mathematical examples from the categorical perspective. 2016 edition.


An Extension of the Galois Theory of Grothendieck

An Extension of the Galois Theory of Grothendieck

Author: André Joyal

Publisher: American Mathematical Soc.

Published: 1984

Total Pages: 87

ISBN-13: 0821823124

DOWNLOAD EBOOK

In this paper we compare, in a precise way, the concept of Grothendieck topos to the classical notion of topological space. The comparison takes the form of a two-fold extension of the idea of space.