Topology of Metric Spaces

Topology of Metric Spaces

Author: S. Kumaresan

Publisher: Alpha Science Int'l Ltd.

Published: 2005

Total Pages: 172

ISBN-13: 9781842652503

DOWNLOAD EBOOK

"Topology of Metric Spaces gives a very streamlined development of a course in metric space topology emphasizing only the most useful concepts, concrete spaces and geometric ideas to encourage geometric thinking, to treat this as a preparatory ground for a general topology course, to use this course as a surrogate for real analysis and to help the students gain some perspective of modern analysis." "Eminently suitable for self-study, this book may also be used as a supplementary text for courses in general (or point-set) topology so that students will acquire a lot of concrete examples of spaces and maps."--BOOK JACKET.


Introduction to Metric and Topological Spaces

Introduction to Metric and Topological Spaces

Author: Wilson A Sutherland

Publisher: Oxford University Press

Published: 2009-06-18

Total Pages: 219

ISBN-13: 0191568309

DOWNLOAD EBOOK

One of the ways in which topology has influenced other branches of mathematics in the past few decades is by putting the study of continuity and convergence into a general setting. This new edition of Wilson Sutherland's classic text introduces metric and topological spaces by describing some of that influence. The aim is to move gradually from familiar real analysis to abstract topological spaces, using metric spaces as a bridge between the two. The language of metric and topological spaces is established with continuity as the motivating concept. Several concepts are introduced, first in metric spaces and then repeated for topological spaces, to help convey familiarity. The discussion develops to cover connectedness, compactness and completeness, a trio widely used in the rest of mathematics. Topology also has a more geometric aspect which is familiar in popular expositions of the subject as `rubber-sheet geometry', with pictures of Möbius bands, doughnuts, Klein bottles and the like; this geometric aspect is illustrated by describing some standard surfaces, and it is shown how all this fits into the same story as the more analytic developments. The book is primarily aimed at second- or third-year mathematics students. There are numerous exercises, many of the more challenging ones accompanied by hints, as well as a companion website, with further explanations and examples as well as material supplementary to that in the book.


Real Variables with Basic Metric Space Topology

Real Variables with Basic Metric Space Topology

Author: Robert B. Ash

Publisher: Courier Corporation

Published: 2014-07-28

Total Pages: 216

ISBN-13: 0486151492

DOWNLOAD EBOOK

Designed for a first course in real variables, this text presents the fundamentals for more advanced mathematical work, particularly in the areas of complex variables, measure theory, differential equations, functional analysis, and probability. Geared toward advanced undergraduate and graduate students of mathematics, it is also appropriate for students of engineering, physics, and economics who seek an understanding of real analysis. The author encourages an intuitive approach to problem solving and offers concrete examples, diagrams, and geometric or physical interpretations of results. Detailed solutions to the problems appear within the text, making this volume ideal for independent study. Topics include metric spaces, Euclidean spaces and their basic topological properties, sequences and series of real numbers, continuous functions, differentiation, Riemann-Stieltjes integration, and uniform convergence and applications.


Metric Spaces

Metric Spaces

Author: Satish Shirali

Publisher: Springer Science & Business Media

Published: 2006

Total Pages: 238

ISBN-13: 9781852339227

DOWNLOAD EBOOK

One of the first books to be dedicated specifically to metric spaces Full of worked examples, to get complex ideas across more easily


An Invitation to Alexandrov Geometry

An Invitation to Alexandrov Geometry

Author: Stephanie Alexander

Publisher: Springer

Published: 2019-05-08

Total Pages: 95

ISBN-13: 3030053121

DOWNLOAD EBOOK

Aimed toward graduate students and research mathematicians, with minimal prerequisites this book provides a fresh take on Alexandrov geometry and explains the importance of CAT(0) geometry in geometric group theory. Beginning with an overview of fundamentals, definitions, and conventions, this book quickly moves forward to discuss the Reshetnyak gluing theorem and applies it to the billiards problems. The Hadamard–Cartan globalization theorem is explored and applied to construct exotic aspherical manifolds.


An Introduction to Metric Spaces

An Introduction to Metric Spaces

Author: Dhananjay Gopal

Publisher: CRC Press

Published: 2020-07-14

Total Pages: 303

ISBN-13: 1000087999

DOWNLOAD EBOOK

This book serves as a textbook for an introductory course in metric spaces for undergraduate or graduate students. The goal is to present the basics of metric spaces in a natural and intuitive way and encourage students to think geometrically while actively participating in the learning of this subject. In this book, the authors illustrated the strategy of the proofs of various theorems that motivate readers to complete them on their own. Bits of pertinent history are infused in the text, including brief biographies of some of the central players in the development of metric spaces. The textbook is divided into seven chapters that contain the main materials on metric spaces; namely, introductory concepts, completeness, compactness, connectedness, continuous functions and metric fixed point theorems with applications. Some of the noteworthy features of this book include · Diagrammatic illustrations that encourage readers to think geometrically · Focus on systematic strategy to generate ideas for the proofs of theorems · A wealth of remarks, observations along with a variety of exercises · Historical notes and brief biographies appearing throughout the text


Basic Topology 1

Basic Topology 1

Author: Avishek Adhikari

Publisher: Springer Nature

Published: 2022-07-04

Total Pages: 523

ISBN-13: 9811665095

DOWNLOAD EBOOK

This first of the three-volume book is targeted as a basic course in topology for undergraduate and graduate students of mathematics. It studies metric spaces and general topology. It starts with the concept of the metric which is an abstraction of distance in the Euclidean space. The special structure of a metric space induces a topology that leads to many applications of topology in modern analysis and modern algebra, as shown in this volume. This volume also studies topological properties such as compactness and connectedness. Considering the importance of compactness in mathematics, this study covers the Stone–Cech compactification and Alexandroff one-point compactification. This volume also includes the Urysohn lemma, Urysohn metrization theorem, Tietz extension theorem, and Gelfand–Kolmogoroff theorem. The content of this volume is spread into eight chapters of which the last chapter conveys the history of metric spaces and the history of the emergence of the concepts leading to the development of topology as a subject with their motivations with an emphasis on general topology. It includes more material than is comfortably covered by beginner students in a one-semester course. Students of advanced courses will also find the book useful. This book will promote the scope, power, and active learning of the subject, all the while covering a wide range of theories and applications in a balanced unified way.


Set Theory and Metric Spaces

Set Theory and Metric Spaces

Author: Irving Kaplansky

Publisher: American Mathematical Society

Published: 2020-09-10

Total Pages: 140

ISBN-13: 1470463849

DOWNLOAD EBOOK

This is a book that could profitably be read by many graduate students or by seniors in strong major programs … has a number of good features. There are many informal comments scattered between the formal development of theorems and these are done in a light and pleasant style. … There is a complete proof of the equivalence of the axiom of choice, Zorn's Lemma, and well-ordering, as well as a discussion of the use of these concepts. There is also an interesting discussion of the continuum problem … The presentation of metric spaces before topological spaces … should be welcomed by most students, since metric spaces are much closer to the ideas of Euclidean spaces with which they are already familiar. —Canadian Mathematical Bulletin Kaplansky has a well-deserved reputation for his expository talents. The selection of topics is excellent. — Lance Small, UC San Diego This book is based on notes from a course on set theory and metric spaces taught by Edwin Spanier, and also incorporates with his permission numerous exercises from those notes. The volume includes an Appendix that helps bridge the gap between metric and topological spaces, a Selected Bibliography, and an Index.


Lipschitz Algebras

Lipschitz Algebras

Author: Nik Weaver

Publisher: World Scientific

Published: 1999

Total Pages: 242

ISBN-13: 9789810238735

DOWNLOAD EBOOK

The Lipschitz algebras Lp(M), for M a complete metric space, are quite analogous to the spaces C(omega) and Linfinity(X), for omega a compact Hausdorff space and X a sigma-finite measure space. Although the Lipschitz algebras have not been studied as thoroughly as these better-known cousins, it is becoming increasingly clear that they play a fundamental role in functional analysis, and are also useful in many applications, especially in the direction of metric geometry. This book gives a comprehensive treatment of (what is currently known about) the beautiful theory of these algebras.