Real Analysis (Classic Version)

Real Analysis (Classic Version)

Author: Halsey Royden

Publisher: Pearson Modern Classics for Advanced Mathematics Series

Published: 2017-02-13

Total Pages: 0

ISBN-13: 9780134689494

DOWNLOAD EBOOK

This text is designed for graduate-level courses in real analysis. Real Analysis, 4th Edition, covers the basic material that every graduate student should know in the classical theory of functions of a real variable, measure and integration theory, and some of the more important and elementary topics in general topology and normed linear space theory. This text assumes a general background in undergraduate mathematics and familiarity with the material covered in an undergraduate course on the fundamental concepts of analysis.


Lineability

Lineability

Author: Richard M. Aron

Publisher: CRC Press

Published: 2015-10-05

Total Pages: 324

ISBN-13: 1482299100

DOWNLOAD EBOOK

Renewed interest in vector spaces and linear algebras has spurred the search for large algebraic structures composed of mathematical objects with special properties. Bringing together research that was otherwise scattered throughout the literature, Lineability: The Search for Linearity in Mathematics collects the main results on the conditions for


An Introduction to Measure Theory

An Introduction to Measure Theory

Author: Terence Tao

Publisher: American Mathematical Soc.

Published: 2021-09-03

Total Pages: 206

ISBN-13: 1470466406

DOWNLOAD EBOOK

This is a graduate text introducing the fundamentals of measure theory and integration theory, which is the foundation of modern real analysis. The text focuses first on the concrete setting of Lebesgue measure and the Lebesgue integral (which in turn is motivated by the more classical concepts of Jordan measure and the Riemann integral), before moving on to abstract measure and integration theory, including the standard convergence theorems, Fubini's theorem, and the Carathéodory extension theorem. Classical differentiation theorems, such as the Lebesgue and Rademacher differentiation theorems, are also covered, as are connections with probability theory. The material is intended to cover a quarter or semester's worth of material for a first graduate course in real analysis. There is an emphasis in the text on tying together the abstract and the concrete sides of the subject, using the latter to illustrate and motivate the former. The central role of key principles (such as Littlewood's three principles) as providing guiding intuition to the subject is also emphasized. There are a large number of exercises throughout that develop key aspects of the theory, and are thus an integral component of the text. As a supplementary section, a discussion of general problem-solving strategies in analysis is also given. The last three sections discuss optional topics related to the main matter of the book.


Recent Trends in Operator Theory and Applications

Recent Trends in Operator Theory and Applications

Author: Fernanda Botelho

Publisher: American Mathematical Soc.

Published: 2019-10-04

Total Pages: 194

ISBN-13: 1470448955

DOWNLOAD EBOOK

This volume contains the proceedings of the workshop on Recent Trends in Operator Theory and Applications (RTOTA 2018), held from May 3–5, 2018, at the University of Memphis, Memphis, Tennessee. The articles introduce topics from operator theory to graduate students and early career researchers. Each such article provides insightful references, selection of results with articulation to modern research and recent advances in the area. Topics addressed in this volume include: generalized numerical ranges and their application to study perturbation of operators, and connections to quantum error correction; a survey of results on Toeplitz operators, and applications of Toeplitz operators to the study of reproducing kernel functions; results on the 2-local reflexivity problem of a set of operators; topics from the theory of preservers; and recent trends on the study of quotients of tensor product spaces and tensor operators. It also includes research articles that present overviews of state-of-the-art techniques from operator theory as well as applications to recent research trends and open questions. A goal of all articles is to introduce topics within operator theory to the general public.


Functional Analysis

Functional Analysis

Author: Theo Bühler

Publisher: American Mathematical Soc.

Published: 2018-08-08

Total Pages: 482

ISBN-13: 147044190X

DOWNLOAD EBOOK

It begins in Chapter 1 with an introduction to the necessary foundations, including the Arzelà–Ascoli theorem, elementary Hilbert space theory, and the Baire Category Theorem. Chapter 2 develops the three fundamental principles of functional analysis (uniform boundedness, open mapping theorem, Hahn–Banach theorem) and discusses reflexive spaces and the James space. Chapter 3 introduces the weak and weak topologies and includes the theorems of Banach–Alaoglu, Banach–Dieudonné, Eberlein–Šmulyan, Kre&ibreve;n–Milman, as well as an introduction to topological vector spaces and applications to ergodic theory. Chapter 4 is devoted to Fredholm theory. It includes an introduction to the dual operator and to compact operators, and it establishes the closed image theorem. Chapter 5 deals with the spectral theory of bounded linear operators. It introduces complex Banach and Hilbert spaces, the continuous functional calculus for self-adjoint and normal operators, the Gelfand spectrum, spectral measures, cyclic vectors, and the spectral theorem. Chapter 6 introduces unbounded operators and their duals. It establishes the closed image theorem in this setting and extends the functional calculus and spectral measure to unbounded self-adjoint operators on Hilbert spaces. Chapter 7 gives an introduction to strongly continuous semigroups and their infinitesimal generators. It includes foundational results about the dual semigroup and analytic semigroups, an exposition of measurable functions with values in a Banach space, and a discussion of solutions to the inhomogeneous equation and their regularity properties. The appendix establishes the equivalence of the Lemma of Zorn and the Axiom of Choice, and it contains a proof of Tychonoff's theorem. With 10 to 20 elaborate exercises at the end of each chapter, this book can be used as a text for a one-or-two-semester course on functional analysis for beginning graduate students. Prerequisites are first-year analysis and linear algebra, as well as some foundational material from the second-year courses on point set topology, complex analysis in one variable, and measure and integration.


Sobolev Spaces on Metric Measure Spaces

Sobolev Spaces on Metric Measure Spaces

Author: Juha Heinonen

Publisher: Cambridge University Press

Published: 2015-02-05

Total Pages: 447

ISBN-13: 1107092345

DOWNLOAD EBOOK

This coherent treatment from first principles is an ideal introduction for graduate students and a useful reference for experts.


Functional Analysis and the Feynman Operator Calculus

Functional Analysis and the Feynman Operator Calculus

Author: Tepper Gill

Publisher: Springer

Published: 2016-03-30

Total Pages: 370

ISBN-13: 331927595X

DOWNLOAD EBOOK

This book provides the mathematical foundations for Feynman's operator calculus and for the Feynman path integral formulation of quantum mechanics as a natural extension of analysis and functional analysis to the infinite-dimensional setting. In one application, the results are used to prove the last two remaining conjectures of Freeman Dyson for quantum electrodynamics. In another application, the results are used to unify methods and weaken domain requirements for non-autonomous evolution equations. Other applications include a general theory of Lebesgue measure on Banach spaces with a Schauder basis and a new approach to the structure theory of operators on uniformly convex Banach spaces. This book is intended for advanced graduate students and researchers.


Modern Real Analysis

Modern Real Analysis

Author: William P. Ziemer

Publisher: Springer

Published: 2017-11-30

Total Pages: 389

ISBN-13: 331964629X

DOWNLOAD EBOOK

This first year graduate text is a comprehensive resource in real analysis based on a modern treatment of measure and integration. Presented in a definitive and self-contained manner, it features a natural progression of concepts from simple to difficult. Several innovative topics are featured, including differentiation of measures, elements of Functional Analysis, the Riesz Representation Theorem, Schwartz distributions, the area formula, Sobolev functions and applications to harmonic functions. Together, the selection of topics forms a sound foundation in real analysis that is particularly suited to students going on to further study in partial differential equations. This second edition of Modern Real Analysis contains many substantial improvements, including the addition of problems for practicing techniques, and an entirely new section devoted to the relationship between Lebesgue and improper integrals. Aimed at graduate students with an understanding of advanced calculus, the text will also appeal to more experienced mathematicians as a useful reference.


Stochastic Analysis, Control, Optimization and Applications

Stochastic Analysis, Control, Optimization and Applications

Author: William M. McEneaney

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 660

ISBN-13: 1461217849

DOWNLOAD EBOOK

In view of Professor Wendell Fleming's many fundamental contributions, his profound influence on the mathematical and systems theory communi ties, his service to the profession, and his dedication to mathematics, we have invited a number of leading experts in the fields of control, optimiza tion, and stochastic systems to contribute to this volume in his honor on the occasion of his 70th birthday. These papers focus on various aspects of stochastic analysis, control theory and optimization, and applications. They include authoritative expositions and surveys as well as research papers on recent and important issues. The papers are grouped according to the following four major themes: (1) large deviations, risk sensitive and Hoc control, (2) partial differential equations and viscosity solutions, (3) stochastic control, filtering and parameter esti mation, and (4) mathematical finance and other applications. We express our deep gratitude to all of the authors for their invaluable contributions, and to the referees for their careful and timely reviews. We thank Harold Kushner for having graciously agreed to undertake the task of writing the foreword. Particular thanks go to H. Thomas Banks for his help, advice and suggestions during the entire preparation process, as well as for the generous support of the Center for Research in Scientific Computation. The assistance from the Birkhauser professional staff is also greatly appreciated.


Advanced Calculus (Revised Edition)

Advanced Calculus (Revised Edition)

Author: Lynn Harold Loomis

Publisher: World Scientific Publishing Company

Published: 2014-02-26

Total Pages: 595

ISBN-13: 9814583952

DOWNLOAD EBOOK

An authorised reissue of the long out of print classic textbook, Advanced Calculus by the late Dr Lynn Loomis and Dr Shlomo Sternberg both of Harvard University has been a revered but hard to find textbook for the advanced calculus course for decades.This book is based on an honors course in advanced calculus that the authors gave in the 1960's. The foundational material, presented in the unstarred sections of Chapters 1 through 11, was normally covered, but different applications of this basic material were stressed from year to year, and the book therefore contains more material than was covered in any one year. It can accordingly be used (with omissions) as a text for a year's course in advanced calculus, or as a text for a three-semester introduction to analysis.The prerequisites are a good grounding in the calculus of one variable from a mathematically rigorous point of view, together with some acquaintance with linear algebra. The reader should be familiar with limit and continuity type arguments and have a certain amount of mathematical sophistication. As possible introductory texts, we mention Differential and Integral Calculus by R Courant, Calculus by T Apostol, Calculus by M Spivak, and Pure Mathematics by G Hardy. The reader should also have some experience with partial derivatives.In overall plan the book divides roughly into a first half which develops the calculus (principally the differential calculus) in the setting of normed vector spaces, and a second half which deals with the calculus of differentiable manifolds.