Topological Properties of Spaces of Continuous Functions

Topological Properties of Spaces of Continuous Functions

Author: Robert A. McCoy

Publisher: Springer

Published: 2006-12-08

Total Pages: 128

ISBN-13: 3540391819

DOWNLOAD EBOOK

This book brings together into a general setting various techniques in the study of the topological properties of spaces of continuous functions. The two major classes of function space topologies studied are the set-open topologies and the uniform topologies. Where appropriate, the analogous theorems for the two major classes of topologies are studied together, so that a comparison can be made. A chapter on cardinal functions puts characterizations of a number of topological properties of function spaces into a more general setting: some of these results are new, others are generalizations of known theorems. Excercises are included at the end of each chapter, covering other kinds of function space topologies. Thus the book should be appropriate for use in a classroom setting as well as for functional analysis and general topology. The only background needed is some basic knowledge of general topology.


Rings of Continuous Functions

Rings of Continuous Functions

Author: Leonard Gillman

Publisher: Courier Dover Publications

Published: 2018-01-16

Total Pages: 321

ISBN-13: 0486816885

DOWNLOAD EBOOK

Designed as a text as well as a treatise, the first systematic account of the theory of rings of continuous functions remains the basic graduate-level book in this area. 1960 edition.


Non-Hausdorff Topology and Domain Theory

Non-Hausdorff Topology and Domain Theory

Author: Jean Goubault-Larrecq

Publisher: Cambridge University Press

Published: 2013-03-28

Total Pages: 499

ISBN-13: 1107328772

DOWNLOAD EBOOK

This unique book on modern topology looks well beyond traditional treatises and explores spaces that may, but need not, be Hausdorff. This is essential for domain theory, the cornerstone of semantics of computer languages, where the Scott topology is almost never Hausdorff. For the first time in a single volume, this book covers basic material on metric and topological spaces, advanced material on complete partial orders, Stone duality, stable compactness, quasi-metric spaces and much more. An early chapter on metric spaces serves as an invitation to the topic (continuity, limits, compactness, completeness) and forms a complete introductory course by itself. Graduate students and researchers alike will enjoy exploring this treasure trove of results. Full proofs are given, as well as motivating ideas, clear explanations, illuminating examples, application exercises and some more challenging problems for more advanced readers.


Topology and Maps

Topology and Maps

Author: T. Husain

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 347

ISBN-13: 1461587980

DOWNLOAD EBOOK

This work is suitable for undergraduate students as well as advanced students and research workers. It consists of ten chapters, the first six of which are meant for beginners and are therefore suitable for undergraduate students; Chapters VII-X are suitable for advanced students and research workers interested in functional analysis. This book has two special features: First, it contains generalizations of continuous maps on topological spaces, e. g. , almost continuous maps, nearly continuous maps, maps with closed graph, graphically continuous maps, w-continuous maps, and a-continuous maps, etc. and some of their properties. The treatment of these notions appears here, in Chapter VII, for the first time in book form. The second feature consists in some not-so-easily-available nuptial delights that grew out of the marriage of topology and functional analysis; they are topics mainly courted by functional analysts and seldom given in topology books. Specifically, one knows that the set C(X) of all real- or com plex-valued continuous functions on a completely regular space X forms a locally convex topological algebra, a fortiori a topological vector space, in the compact-open topology. A number of theorems are known: For example, C(X) is a Banach space iff X is compact, or C(X) is complete iff X is a kr-space, and so on. Chapters VIII and X include this material, which, to the regret of many interested readers has not previously been available in book form (a recent publication (Weir [\06]) does, however, contain some material of our Chapter X).


Descriptive Topology in Selected Topics of Functional Analysis

Descriptive Topology in Selected Topics of Functional Analysis

Author: Jerzy Kąkol

Publisher: Springer Science & Business Media

Published: 2011-08-30

Total Pages: 494

ISBN-13: 1461405297

DOWNLOAD EBOOK

"Descriptive Topology in Selected Topics of Functional Analysis" is a collection of recent developments in the field of descriptive topology, specifically focused on the classes of infinite-dimensional topological vector spaces that appear in functional analysis. Such spaces include Fréchet spaces, (LF)-spaces and their duals, and the space of continuous real-valued functions C(X) on a completely regular Hausdorff space X, to name a few. These vector spaces appear in functional analysis in distribution theory, differential equations, complex analysis, and various other analytical settings. This monograph provides new insights into the connections between the topological properties of linear function spaces and their applications in functional analysis.


Studies in Topology

Studies in Topology

Author: Nick M. Stavrakas

Publisher: Academic Press

Published: 2014-05-10

Total Pages: 673

ISBN-13: 1483259110

DOWNLOAD EBOOK

Studies in Topology is a compendium of papers dealing with a broad portion of the topological spectrum, such as in shape theory and in infinite dimensional topology. One paper discusses an approach to proper shape theory modeled on the "ANR-systems" of Mardesic-Segal, on the "mutations" of Fox, or on the "shapings" of Mardesic. Some papers discuss homotopy and cohomology groups in shape theory, the structure of superspace, on o-semimetrizable spaces, as well as connected sets that have one or more disconnection properties. One paper examines "weak" compactness, considered as either a strengthening of absolute closure or a weakening of relative compactness (subject to entire topological spaces or to subspaces of larger spaces). To construct spaces that have only weak properties, the investigator can use the various productivity theorems of Scarborough and Stone, Saks and Stephenson, Frolik, Booth, and Hechler. Another paper analyzes the relationship between "normal Moore space conjecture" and productivity of normality in Moore spaces. The compendium is suitable for mathematicians, physicists, engineers, and other professionals involved in topology, set theory, linear spaces, or cartography.


Topology Through Inquiry

Topology Through Inquiry

Author: Michael Starbird

Publisher: American Mathematical Soc.

Published: 2020-09-10

Total Pages: 313

ISBN-13: 1470462613

DOWNLOAD EBOOK

Topology Through Inquiry is a comprehensive introduction to point-set, algebraic, and geometric topology, designed to support inquiry-based learning (IBL) courses for upper-division undergraduate or beginning graduate students. The book presents an enormous amount of topology, allowing an instructor to choose which topics to treat. The point-set material contains many interesting topics well beyond the basic core, including continua and metrizability. Geometric and algebraic topology topics include the classification of 2-manifolds, the fundamental group, covering spaces, and homology (simplicial and singular). A unique feature of the introduction to homology is to convey a clear geometric motivation by starting with mod 2 coefficients. The authors are acknowledged masters of IBL-style teaching. This book gives students joy-filled, manageable challenges that incrementally develop their knowledge and skills. The exposition includes insightful framing of fruitful points of view as well as advice on effective thinking and learning. The text presumes only a modest level of mathematical maturity to begin, but students who work their way through this text will grow from mathematics students into mathematicians. Michael Starbird is a University of Texas Distinguished Teaching Professor of Mathematics. Among his works are two other co-authored books in the Mathematical Association of America's (MAA) Textbook series. Francis Su is the Benediktsson-Karwa Professor of Mathematics at Harvey Mudd College and a past president of the MAA. Both authors are award-winning teachers, including each having received the MAA's Haimo Award for distinguished teaching. Starbird and Su are, jointly and individually, on lifelong missions to make learning—of mathematics and beyond—joyful, effective, and available to everyone. This book invites topology students and teachers to join in the adventure.


Analytic Topology

Analytic Topology

Author: Gordon Thomas Whyburn

Publisher: American Mathematical Soc.

Published: 1963

Total Pages: 295

ISBN-13: 0821810286

DOWNLOAD EBOOK

"The material here presented represents an elaboration on my Colloquium Lectures delivered before the American Mathematical Society at its September, 1940 meeting at Dartmouth College." - Preface.


Pseudocompact Topological Spaces

Pseudocompact Topological Spaces

Author: Michael Hrušák

Publisher: Springer

Published: 2018-07-19

Total Pages: 309

ISBN-13: 3319916807

DOWNLOAD EBOOK

This book, intended for postgraduate students and researchers, presents many results of historical importance on pseudocompact spaces. In 1948, E. Hewitt introduced the concept of pseudocompactness which generalizes a property of compact subsets of the real line. A topological space is pseudocompact if the range of any real-valued, continuous function defined on the space is a bounded subset of the real line. Pseudocompact spaces constitute a natural and fundamental class of objects in General Topology and research into their properties has important repercussions in diverse branches of Mathematics, such as Functional Analysis, Dynamical Systems, Set Theory and Topological-Algebraic structures. The collection of authors of this volume include pioneers in their fields who have written a comprehensive explanation on this subject. In addition, the text examines new lines of research that have been at the forefront of mathematics. There is, as yet, no text that systematically compiles and develops the extensive theory of pseudocompact spaces, making this book an essential asset for anyone in the field of topology.